AD-A096 685	MATHEMATIC	AL MODELING	OF MULTI-ELEME UBAU, A STAVRI	NT MONOPOLE A	NGINETC F/G NTENNAS.(U) AAG29-79-C-020 NL	`
1 of 2	na 					

AD A 096685

ARD 15415. I-EL

THE STATE UNIVERSITY OF NEW JERSEY

LEVEL

THE POCKMENT TO BEST QUALITY PROCESSION OF THE COPY TURNISHED TO DDC CONTAINED A HIGH PROCESSION OF PAGES WHICH DO NOT AND LEGIBLY.

81 3 23 130

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

DAAG -7-77-6-027 DAAG29-28-G-0228 /

(6) Mathematical Modeling of Multi-Element Monopole Antennas,

10 N.N./Puri, G./Goubau

A./Stavridis S./Fich

11 9 min

1: 122

(1) ARO

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER 2 GOVT ACCESSION NO. AD-A096 685	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
Mathematical Modeling of Multi-Element	Final Report
Monopole Antennas	6. PERFORMING ORG. REPORT NUMBER
7 AUTHOR(n)	8. CONTRACT OR GRANT NUMBER(1)
N.N. Puri, G. Goubau, A. Stavridis and S. Fich	DAAG29-19-G-0228;
	" 79 C Ó201
Rutgers-The State University of New Jersey College of Engineering, Dept. of Electrical Eng. P.O. Box 909, Piscataway, NJ 08854	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U.S. Army Research Office	March 9, 1981
Post Office Box 1211	13. NUMBER OF PAGES
Research Triangle Park, NC 27709 14 MONITORING AGENCY NAME & ADDRESS(II dillorent from Controlling Office)	15. SECURITY CLASS, fol this report)
	Unclassified
	15a. DECLASSIFICATION, DOWNGRACING SCHEDULE

16. DISTHIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

NA

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

19. YEY HORDS (Continue on reverse side if necessary and identify by block number)

Antenna modeling, diakoptic theory, capacitive loading of antennas, singular integrals

20. AP TRACT (Continue on reverse side if necessary and identify by block number)

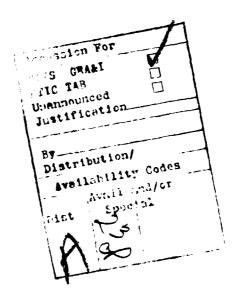
This research document presents a new theory for the analysis of multielement antennas which consist of interconnected conductive structure elements of electrically small dimensions. The theory is based on the retarded electromagnet potentials which permit a diakoptic approach to the problem. The antenna is broken up into its individual structure elements. Each element is assumed to be excited, a) by currents which are impressed at its terminals, i.e. junctions with adjacent elements (current coupling), and b) by the electric fields of the current and charges on all the other elements (field coupling). Both excitations are

DD 1 AN 73 1473

Unclassified

20. Abstract (continued)

treated independently. Each impressed current produces a "dominant" current distribution, a characteristic of the element, which can be readily computed. Current coupling is formulated by "intrinsic" impedance matrices which relate the scalar potentials at the terminals of an element, caused by its dominant current distributions, to the impressed currents of the element. Field coupling produces "scatter" currents on all the elements, and is formulated by a "field coupling" matrix which relates the scalar potentials at the terminals, caused by field coupling, to the impressed currents at all the terminals. Intrinsic and "field coupling" are combined to form the "complete" impedance matrix of the diakopted antenna. Enforcing continuity of the currents and equality of the scalar potentials at all the interconnections between the elements yields a system of linear equations for the junction currents and the input impedance of the antenna. Current coupling dominates over field coupling. Field coupling due to the dominant current distributions of the elements is of primary importance while field coupling due to the scatter currents is, in general, negligible. This theory is applied to several multi-element antennas and the results are compared with other methods to highlight the numerical advantages.



MATHEMATICAL MODELING OF MULTI-ELEMENT MONOPOLE ANTENNAS

FINAL REPORT

bу

- N. N. Puri
- G. Goubau
- A. Stavridis
- S. Fich

January 1981

US Army Research Office Grant # DAAG 29-77-G-0228

Rutgers-The State University of New Jersey

College of Engineering

Department of Electrical Engineering

P.O. Box 909

Piscataway, N.J. 08854

Table of Contents

Summary
I. Introduction
II. Diakoptic Theory of Multi-Element Antennas
III. Impedance Matrix of a Diakopted Antenna
III.l Current Coupling Between Structure Elements and Intrinsic Impedance Matrix [Z(I)]
A. Structure elements with one terminal
B. Structure elements with two or more terminals
III.2 Field Coupling Between Structural Elements
IV. Complete Impedance Matrix [Z] of the Dialopted Antenna
V. Interconnection of Diakopted Elements to Obtain Impedance of Assembled Multi Element Antenna
VI. Receiving Antennas
VII. Numerical Results and Computer Programs
A. Cylindrical Wire
A.l Dominant Current Distribution, Dominant Charge Distribution and Intrinsic Impedance Calculations 39
A.2 Impedance Calculations 41
VIII. Dominant Current Distribution and Impedance of a Circular Disc Fed at the Center
IX. Impedance Calculation of a Thin Wire with Linear Current Distribution . 62
X. Impedance Calculation of a Dipole with Linear Current Distribution via Diakoptic Theory
XI. Computation of Dominant Current Distribution for all Frequencies via Static Charge Distribution
A. Cylindrical Conductor
B. Circular Disc
XII. Top Loaded Dipole Antenna
References
Conclusion

Appendix 1	Equivalence Between Current and Charge Excitation	101
Appendix 2	Derivation of Equation III.19	103
Appendix 3	Derivation of Equation III.23	105
Appendix 4	Proof for the Stationary Formulation of the Impedances	106
Appendix 5		109

Table of Figures

Figure	1.	Broad-band Multi-element Monopole Antenna	4
Figure	2.	Diakopted Capacitively Loaded Dipole	5
Figure	3.	Excitation of Single Terminal Structure Element	12
Figure	4.	Excitation of Structure Element by Oscillating Charge	17
Figure	5.	Low Frequency Equivalent Circuit for a Single Terminal Structure Element	17
Figure	6.	Structure Element with Two Terminals	20
Figure	7.	Equivalent Circuit for Two Terminal Structure Element	20
Figure	8.	Thin Wire Dipole Treated as a Diakopted Four Element System	29
Figure	9.	Comparison of Dipole Impedance Calculated with Diakoptic Theory vs. King	32
Figure	9a.	Comparison of Dipole Impedance Calculated with Diakoptic Theory vs. King	33
Figure	9b.	Comparison of Dipole Impedance Calculated with Diakoptic Theory vs. King	34
Figure	9c.	Comparison of Dipole Impedance Calculated with Diakoptic Theory vs. King	35
Figure	9d.	Comparison of Dipole Impedance Calculated with Diakoptic Theory vs. King	36
Figure	10.	Current Distribution of a Cylindrical Conductor with a Current I_0 Impressed at one End	49
Figure	11.	Charge Distribution of a Cylindrical Conductor with a Current ${\bf I_0}$ Impressed at one End	50
Figure	12.	Imput Impedance of a Cylindrical Conductor with a Current I $_{\rm O}$ Impressed at one End	51
Figure	13.	Current Distribution on a Circular Disk Fed at the Center	59
Figure	14.	Charge Distribution on a Circular Disk	60
Figure	15.	Impedance of a Center Fed Circular Disk	61
Figure	16.	Dipole Impedance (Linear Current Distribution)	66
^F ig ure	17.	Impedance of Wire with Linear Current Distribution	71
Figure	18.	Current Distribution on Cylindrical Conductor	77
Figure	19.	Charge Distribution on a Cylindrical Conductor	78

Figure	20.	Current Distribution on Circular Plate Fed at the Center	 82
Figure	21.	Charge Distribution on a Circular Plate Fed at the Center	 83
Figure	22.	Dipole with Circular Plates Capactive Loading	 84
Figure	23.	Impedance of a Dipole with Top Circular Plates	 98
Figure	24.	Comparison of Folded Dipole Admittance Calculated with Dikoptic Theory vs. King, Harrison	 99
Figure	25.	Compensation of Capacitive Currents at Contact Areas	 110

List of Tables

Table 1.	$\frac{I_n(x)}{I_0(0)}$ of a Cylindrical Conductor $\alpha = 2 cn \frac{2c}{\rho} = 10$	73
Table 2.	$\frac{1}{I_0(0)}$. $\frac{dI_0(x)}{dx}$ of a Cylindrical Conductor $\hat{x} = 2\hat{x}n \frac{2\hat{x}}{\rho} = 10 \dots$	76
Table 3.	$\frac{I_n(x)}{I_0(0)}$ of a Circular Plate Fed at the Center	80
Table 4.	$\frac{\text{div i}(x)}{I_0(0)}$ of a Circular Plate Fed at the Center	81

Summary

į

This research document presents a new theory for the analysis of multielement antennas which consist of interconnected conductive structure elements of electrically small dimensions. The theory is based on the retarded electromagnetic potentials which permit a diakoptic approach to the problem. The antenna is broken up into its individual structure elements. Each element is assumed to be excited, a) by currents which are impressed at its terminals. i.e. junctions with adjacent elements (current coupling), and b) by the electric fields of the currents and charges on all the other elements (field coupling). Both excitations are treated independently. Each impressed current produces a "dominant" current distribution, a characteristic of the element, which can be readily computed. Current coupling is formulated by "intrinsic" impedance matrices which relate the scalar potentials at the terminals of an element, caused by its dominant current distributions, to the impressed currents of the element. Field coupling produces "scatter" currents on all the elements, and is formulated by a "field coupling" matrix which relates the scalar potentials at the terminals, caused by field coupling, to the impressed currents at all the terminals. Intrinsic and "field coupling" are combined to form the "complete" impedance matrix of the diakopted antenna. Enforcing continuity of the currents and equality of the scalar potentials at all the interconnections between the elements yields a system of linear equations for the junction currents and the input impedance of the antenna. Current coupling dominates over field coupling. Field coupling due to the dominant current distributions of the elements is of primary importance while field coupling due to the scatter currents is, in general, negligible. This theory is applied to several multi-element antennas and the results are compared with other methods to highlight the numerical advantages.

This research document is dedicated to Dr. Goubau who expounded most of the ideas developed here and whose untimely death is a irreparable loss to the Scientific Community.

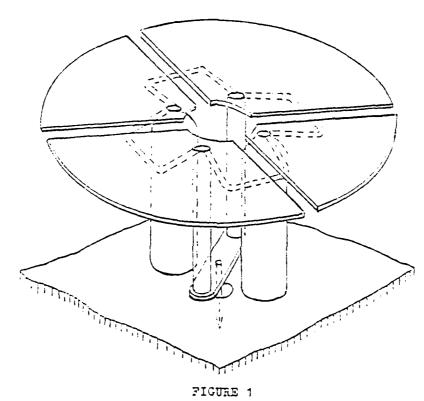
I. Introduction

Improved tactical communication systems require antennas which are electrically small (i.e. small compared with the wavelength), have very large bandwidths and reasonably high efficiency. It is well known to antenna experts that these requirements work against each other. The problem therefore, is to find sophisticated antenna structures which provide the best compromise between these contradicting requirements.

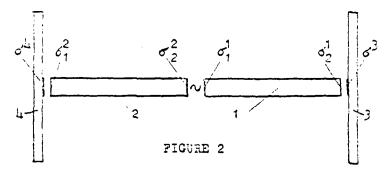
Experimental investigations of empirically designed multielement antennas, i.e., antennas which comprise a number of interconnected and closely spaced conductive elements, have shown promising results. An example of such a broadband multielement monopole antenna is shown in Figure 1. This antenna consists of four vertical conductors. The two thicker ones are grounded, while the other two are interconnected near the ground plane and connected to the input terminal. Each vertical conductor has a top capacitor in the form of a metal plate, and there are inductive interconnections between the plates in the form of wire loops. But antennas like the one mentioned, whose functioning is not quite understood, are not amenable to conventional computer analysis.

An analytical treatment of such a composite structure appears to be a rather hopeless undertaking. Commonly used numerical techniques are impracticable because they would require computers with enormous storage. Moreover, these techniques do not always yield reliable results [2].

This research offers a new approach to problems of this kind. According to this approach the composite structure is diakopted into its individual structure elements. As a simple example, Figure 2 shows a diakopted dipole with end capacitor plates. Each structure element is characterized by electrical quantities which depend only on size and shape of the element, and



Broad-band Multi-element Monopole Antenna



Diakopted Capacitively Loaded Dipole

the assembly is treated similarly to the interconnection of n-port networks.

The excitation of each element is ascribed to two causes, a) the currents entering the element at its "terminals," i.e. junctions with adjacent elements or the source, and b) the fields of the currents and charges on all the other elements. The first is referred to as "current coupling" and the second as "field coupling." Both excitations are treated separately. Current coupling implies hypothetical sources with a single terminal and the capability of impressing a current onto a conductor. Although such sources violate the continuity condition, their assumption is permissible if the electro-magnetic fields are expressed by the retarded electromagnetic potentials. Although the continuity condition is violated in the treatment of individual structure elements, it is restored when the elements are interconnected. Thus, current coupling is computed by impressing a current at a terminal of a structure element. This current spreads over the surface of the element and produces a current distribution which is uniquely determined by the geometry of the element and the location of the terminal and is called the dominant current distribution associated with a given terminal. There are as many dominant current distributions as there are terminals. The relationship between the scalar potentials at the terminals (produced by the dominant current distributions) and the impressed currents is formulated by the "intrinsic impedance matrix" of the element.

Field coupling, on the other hand, excites scatter currents which are super-imposed on the dominant current distributions. The scalar potentials at the terminals due to field coupling depend on all the impressed currents. Their relationship with the impressed currents is forumlated by a "field coupling" matrix. The intrinsic impedance matrix and "field coupling" matrix combined together form the "complete impedance matrix" of the diakopted antenna. This

matrix relates the total scalar potentials at the terminals of all the elements to all the impressed currents.

Interconnection of the structure elements, which requires equal scalar potentials at the interconnected terminals and continuity of the junction currents, it formulated by an interconnection matrix. In this manner a system of linear equations is obtained which yields the junction currents and the input impedance of the antenna.

A most simple antenna to which the theory applies is a simple monopole antenna with a top capacitor. In this case, there are two structure elements, the vertical conductor and the top capacitor. The ground plane can be replaced by the antenna image. No systematic way of computing the impedance characteristics of this antenna has been reported in the literature.

II. Diakoptic Theory of Multi-Element Antennas

In this section we shall develop the essential theoretical results required to implement the diakoptic theory.

Consider a multi-element radiating structure such as shown in Figure 1. Various elements are interconnected to each other via terminals of junctions. Let each radiating element be disconnected or (diakopted) from all other elements and be suspended in space. The assemblage of these disconnected elements is called the diakopted (or primitive) system. Each element has many terminals on each of which certain impressed current and potential is assumed. The essential requirement for this diakopted system with impressed currents along the junctions is that it be performancewise identical to the assembled antenna. Thus,

- a) The sum of the impressed currents is zero at every junction between the structure elements and the continuity condition is satisfied at every input terminal. This requirement assures that the field of assembled antenna is Maxwellian.
- b) The scalar potentials at the interconnected terminals are equal.
- c) The potential difference between the input in terminals is equated with the driving voltage of the antenna source.

Let the potential-current relationship at every terminal be written in matrix form:

$$[\hat{\phi}] = [Z][I]$$
 [diakopted antenna] II.1

$$[\hat{\mathfrak{J}}]' = [\mathbb{Z}]'[\mathbb{I}]'$$
 [assembled actual antenna] II.2

Requirements (a), (b) and (c) represent Kirchoff's laws for interconnected structures and can be written as

$$[\hat{\phi}]' = [C]_{\uparrow}[\hat{\phi}]$$
 II.4

$$[\S]'_{t}[I]' = [\widehat{\phi}]_{t}[\overline{I}]$$

11.5

[C], represents the transpose [C].

Matrix [Z] represents the impedance of the diakopted antenna and primed quantities refer to the actual assembled antenna. [C] may be a rectangular matrix with $\{c_{ij}\}$ as 0 or 1.

From II.3, II.4 and II.5, the impedance matrix of the actual structure can be written as

$$[Z]' = [C]_{t}[Z][C]$$

An example at the end of this section shows how [C] and [Z]' are obtained.

The essential results of this section show that in order to obtain [Z]', we have to only compute the impedance matrix [Z] of the so called diakopted structure.

The most important point here to remember is that the elements of the impedance matrix [Z]' depend upon simultaneously knowing current distribution on all the radiating structure elements. Thus, without diakopting the structure, we have to simultaneously solve as many integral equals as there are radiating elements. On the other hand, the elements of the impedance matrix [Z] of the diakopted structure can be found by computing the current distribution on individual elements separately and hence involves solving as many integral equations as there are radiating structures, but only individually. This results in a tremendous savings of numerical computation. In what follows we shall show how the so called total, primitive (or diakopted) impedance matrix [Z] can be computed.

III. Impedance Matrix of a Diakopted Antenna

Consider each element of a diakopted antenna.

The excitation of each element is ascribed to two causes. a) the currents entering the element at its "terminals," i.e., junctions with adjacent elements or the source, and b) the fields of the currents and charges on all the other elements. The first is referred to as "current coupling" and the second as "field coupling." Both excitations can be treated separately and the resulting compling can be superimposed due to linearity. Current coupling implies hypothetical sources with a single terminal and the capability of impressing a current onto a conductor. Although such sources violate the continuity condition, their assumption is permissible if the electro-magnetic fields are expressed by the retarded electromagnetic potentials. Although the continuity condition is violated in the treatment of individual structure elements, it is restored when the elements are interconnected. If a current is impressed at a terminal of a structure element, the current spreads over the surface of the element and produces a current distribution which is uniquely determined by the geometry of the element and the location of the terminal. This is called dominant current distribution of a particular element. There are as many dominant current distributions as there are terminals. The relationship between the scalar potentials at the terminals, produced by the dominant current distributions, and the impressed currents is formulated by the "intrinsic impedance matrix" of the element and is referred to as [Z(I)].

Field coupling excites scatter currents which are superimposed on the dominant current distributions. The scalar potentials at the terminals due to field coupling depend on all the impressed currents. Their relationship with the impressed currents is formulated by a "field coupling" matrix [Z(F)].

$$[Z] = [Z(I)] + [Z(F)]$$

This matrix [Z] is called the total impedance matrix of the diakopted antenna and relates the total scalar potentials at all the terminals of all the elements of the diakopted structure to all the impressed currents.

III.1 Current Coupling Between Structure Elements and Intrinsic Impedance Matrix [Z(I)].

A. Structure elements with one terminal

Consider one of the capacitor plates of the dipole in Fig. 2 separated from the other elements and suspended in space, with a current I impressed at the terminal, i.e., contact area in the center of the plate (Fig. 3). The contact area σ is considered very small compared with the surface area of the element. Excitation by an impressed current cannot be treated with Maxwell's equations, because Maxwell's equations imply sources which separate positive and negative charges. In contrast, impressed currents require sources which produce charges. The retarded electromagnetic potentials do not impose any conditions on the source, and can therefore be used for our problem.

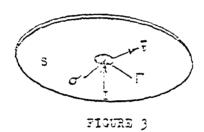
If $\bar{i}(\bar{r})$ is the surface current density, and $q(\bar{r})$ the surface charge density due to the impressed current I, the retarded potentials are

$$\bar{A}(\bar{r}) = \frac{u}{4\pi} \int_{S} \bar{f}(\bar{r}') G(\bar{r}, \bar{r}') dS \quad \text{(vector potential)}$$
 III.1

$$: (\bar{r}) = \frac{1}{4\pi\epsilon} \int_{S} q(r')G(\bar{r},\bar{r}')dS \quad (scalar potential)$$
 III.2

with

$$\Im(\bar{r},\bar{r}') = \frac{\exp(-jk[\bar{r} - \bar{r}'])}{|\bar{r} - \bar{r}'|} \qquad k = 2\pi/\lambda$$



Excitation of Single Terminal Terminal Structure Element

where \vec{r}' is the position vector of the changes and currents on the confidence elements dS, and \vec{r} that of the point of observation. The quantities \vec{r} \vec{r}' and $\vec{q}(\vec{r})$ must satisfy the following two equations on the surface of the element outside the contact area as:

$$\vec{E}(\vec{r}) \times d\vec{S} = -\left[j\omega\vec{A}(\vec{r}) + 7\sigma(\vec{r})\right] \times d\vec{S} = 0$$
 (Boundary condition) III.3

$$\vec{7} \cdot \vec{i}(\vec{r}) + j\omega q(\vec{r}) = 0$$
 (Continuity condition) III.4

The condition that the current flux through the boundary curve \mathbb{Z} of the contact area σ is the continuation of the impressed current \mathbb{I} , is given as:

$$\oint_{\Gamma} \vec{t}(\vec{r}) \cdot \vec{t}(\vec{r}) dr = I$$
 III.5

where $\tilde{t}(\tilde{r})$ is a unit vector tangential to the surface S and normal T. The current and charge distributions $\tilde{t}(\tilde{r})$ and $q(\tilde{r})$ due to the impressed current I are termed as "dominant" distributions since the currents due to field coupling between the elements are, in general, relatively small. From the boundary condition III.3

$$\int_{S} \vec{E}(\vec{r}) \cdot \vec{i}(\vec{r}) dS = -\int_{S} [j\omega \vec{A}(\vec{r}) + \vec{r} \phi(\vec{r})] \cdot \vec{i}(\vec{r}) dS = 0 \qquad III.6$$

The surface of integration S is the surface of the element with the exclusion of the contact area. Using the relations

$$\bar{7} \diamond \cdot \bar{i}(\bar{r}) = \bar{\nabla} \cdot (\diamond(\bar{r})\bar{i}(r)) - \diamond(\bar{r})\bar{\nabla} \cdot \bar{i}(\bar{r}) = \bar{\nabla} \cdot (\diamond(\bar{r})\bar{i}(\bar{r})) + j\omega \diamond(\bar{r})q(\bar{r}) \text{ III. } 7$$

and applying Gauss' theorem, one obtains from III.6

$$\frac{1}{2} \int_{S} [\bar{A}(\bar{r}) \cdot \bar{i}(\bar{r}) + b(\bar{r})q(\bar{r})] dS = -\int_{S} \bar{z} \cdot (b(\bar{r})\bar{i}(\bar{r})) dS = \hat{C} \cdot z(\bar{r})\bar{i}(\bar{r}) \cdot \bar{z}(\bar{r}) d\bar{r} \qquad III.8$$

If the contact area σ is sufficiently small, σ can be considered constant within the contact area. Thus, with (5), equation (8) reduces to

$$j\omega \int_{S} [A(\vec{r}) \cdot \vec{i}(\vec{r}) + o(\vec{r})q(\vec{r})] dS = \phi I$$
III.9

where 5 is the scalar potential at the contact area.

The ratio between \flat and I can be used to define an impedance which shall be termed "intrinsic impedance." If \tilde{A} and \flat are expressed by the current and tharge distribution, the intrinsic impedance of the element is

$$\overline{Z}(I) = \frac{3\omega}{I} = \frac{3\omega}{I^2} \int_{S} [\overline{A}(\overline{r}) \cdot \overline{I}(\overline{r}) + \frac{1}{2} (\overline{r}) q(\overline{r})] dS$$

$$= \frac{3\omega\mu}{4\pi} \int_{S} \int_{S'} G(\overline{r}, \overline{r}') \left[\frac{\overline{I}(\overline{r}) \cdot \overline{I}(\overline{r}')}{I^2} - \frac{1}{k^2} \frac{q(\overline{r}) q(\overline{r}')}{Q^2} \right] dS dS \qquad III.10$$

where $Q = I/j\omega$ is the total charge on the element. The current and charge distribution functions i/I and q/Q are solely determined by the geometry of the element and the location of the coupling area.

When the intrinsic impedance is computed with III.10 for a conductor of any shape, for extremely low frequencies, it takes the form

$$Z(I) = \frac{1}{j\omega C} - \frac{1}{4\pi} \sqrt{\frac{u}{\varepsilon}} \qquad (\omega \rightarrow 0)$$
 III.11

where C is the static capacity of the element. The first term $1/\text{j}_{\omega}\text{C}$ is the one

which is to be expected. The second term represents a negative resistance of -33 onms and is not quite obvious. It is brought about by the fact that an impressed current produces a charge on the element without a countercharge. In contrast to a Maxwell source. If the scalar potential is expanded in a power series in ω , one obtains

$$z(\vec{r}) = \frac{1}{4\pi\epsilon} \int_{S'} G(\vec{r}, \vec{r}') q(\vec{r}') dS' = \frac{1}{4\pi\epsilon} \left\{ \int_{S'} \frac{q(\vec{r}')}{|\vec{r} - \vec{r}'|} dS' - jk \int_{S'} q(\vec{r}') dS' + \ldots \right\}$$

The first term of this expansion is the static potential of the charges. The second term which is independent of \bar{r} represents a potential, termed "background" potential ϕ_0 , which is uniform in space and has no gradient. This means it does not produce a field. It is this background potential which produces the -30Ω term in III.11. When the element which we assumed to be suspended in space is within the antenna structure the background potential is compensated because the combined charges on all the other elements are negatively equal to the charges of the considered element. The background potential can be avoided if the retarded scalar potential is redefined as modified scalar potential

$$\hat{\beta} = \phi - \phi_0 = \frac{1}{4\pi\epsilon} \int_{S'} \hat{G}(\bar{r}, \bar{r}') q(\bar{r}') dS'$$
III.12

where

$$\widehat{G}(\bar{r},\bar{r}') = \frac{e^{-jk|\bar{r}-\bar{r}'|}}{|\bar{r}-\bar{r}'|} + jk$$
III.13

This modified scalar potential which will be used throughout the paper is legitimate as it is not conflicting with Maxwell's theory. Since $\overline{z}_2 = \overline{z}_3$, the the modified potential . For a Maxwell system s and s are identical, since god extended over the entire surface of the system is zero. The intrinsic impedance of a structure element with one connection becomes

$$Z = \frac{\hat{s}}{I} = \frac{j\omega}{I^2} \int_{S} \left[\bar{A}(\vec{r}) \cdot \hat{i}(\vec{r}) + \hat{s}(\vec{r}) q(\vec{r}) \right] dS$$

$$= \frac{j\omega u}{4\pi} \int_{S} \int_{S} \left[\bar{G}(\vec{r}, \vec{r}') \frac{\hat{i}(\vec{r}) \hat{i}(\vec{r}')}{I^2} - \frac{1}{k^2} \hat{G}(\vec{r}, \vec{r}') \frac{q(\vec{r}) q(\vec{r}')}{Q^2} \right] dS' dS \qquad III.14$$

III.14 represents a stationary formulation of the intrinsic impedance. This means, small errors in the dominant current distribution have only a second order effect on the intrinsic impedance. (See Appendix 4)

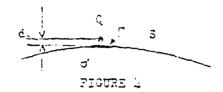
Excitation by an impressed current I at the terminal can be considered equivalent with the excitation by an oscillating charge

$$Q = \frac{I}{j\omega}$$
 III.15

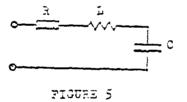
which is placed above the contact area at a distance d+0 as shown in Fig. 4. The charge on the contact area σ consists essentially of the image charge -Q, with the charge +Q-distributed over the surface areas of the structure element, because the net charge on the element must be zero. The equivalence between charge and current excitation is shown in Appendix 1.

The intrinsic impedance Z(I) of an element with one terminal can be represented by a lumped element circuit as snown in Fig. 5. For low frequencies, i.e. when the dimensions of the element are small compared with the wave length and L can be considered constant, while R increases proportionally with ω^2 :

$$Z = \frac{1}{i\omega C} + j\omega L + R(\omega^2)$$



Excitation of Structure Element by Oscillating Charge



Low Frequency Equivalent Circuit for a Single Terminal Structure Element In case ϕ instead of $\hat{\phi}$ is used, the individual elements will show an additional -30 Ω . fictitious resistance in the intrinsic impedance. However, the impedance of the totally assembled antenna is the same as the conventional impedance due to automatic compensation of -30 Ω .

5. Structure elements with two or more terminals

A structure element with two terminals such as the cylindrical conductors of Fig. 2 has two dominant current distributions, one associated with each of the impressed currents (Fig. 6). Each dominant current distribution produces a scalar potential at both contact areas. If $\hat{\phi}_{11}$ and $\hat{\phi}_{21}$ are the potentials at the terminals 1 and 2 due to I_1 , and $\hat{\phi}_{12}$, $\hat{\phi}_{22}$ those due to I_2 , then, the relationship between the total potentials $\hat{\phi}_1$ and $\hat{\phi}_2$ at the terminals and the impressed currents can be written as

$$\hat{\phi}_{1} = \hat{\phi}_{11} + \hat{\phi}_{12} = Z_{11}(I)I_{1} + Z_{12}(I)I_{2}$$

$$\hat{\phi}_{2} = \hat{\phi}_{21} + \hat{\phi}_{22} = Z_{12}(I)I_{1} + Z_{22}(I)I_{2}$$
III.17

For a structure element with M terminals the relationship between the terminal potentials and the impressed currents is formulated by an M \times M intrinsic impedance matrix.

$$[5] = [Z][I]$$
 III.18

where

$$Z_{jk}^{(\mathbf{I})} = \frac{j_{\omega}}{I_{j}I_{k}} \int_{S} [\bar{A}_{k}(\bar{r}) \cdot \bar{i}_{j}(\bar{r}) + \hat{\phi}_{k}(\bar{r})q_{j}(\bar{r})]dS$$

$$= \frac{j_{\omega u}}{4\pi} \int_{S} [\bar{S}_{j}^{(\mathbf{r})}] [\bar{G}_{j}^{(\mathbf{r})}] [\bar{G}_{j}^$$

The quantities i_j, q_j and \overline{i}_k, q_k are the dominant current and charge distributions generated by the impressed currents $I_j = j\omega Q_j$ and $I_k = j\omega Q_k$, and \overline{A}_k, ψ_k are the retarded potentials associated with \overline{i}_k, q_k . (III.19) is derived in Appendix 2.

The symmetry of the intrinsic impedance matrix, $Z_{jk}(I) = Z_{kj}(I)$, is evident from the second formulation of III.19. In Appendix 4 it is shown that III.19 is a stationary representation of the matrix elements.

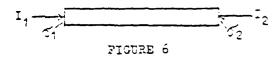
A lumped element equivalent circuit for a structure element with two terminals is shown in Fig. 7. For sufficiently low frequencies the capacitors and inductors can be considered constant, while the resistors increase with ω^2 . The resistor which is in series with the capacitor is negative, but smaller than the resistors associated with the inductors.

III.2 Field Coupling Between Structural Elements.

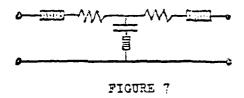
Field Coupling Impedance Matrix

We now consider a diakopted structure and arbitrary currents impressed at the terminals. The capacitively loaded dipole of Figure 2 may serve as an example. The terminals are identified by a superscript i and a subscript k, the superscript referring to the number of the element, and the subscript referring to the number of the terminal on the element. If there were no field coupling between the elements, the current distributions on all the elements would be the dominant distributions associated with the impressed currents.

The field of a dominant current distribution is non-Maxwellian since the associated net charge is nonzero. If a current I_k^i is impressed at the terminal $\binom{i}{k}$, the non-Maxwellian field of the dominant current and charge distribution I_k^i , I_k^i induces currents on all the other elements. The scatter fields excited by these induced currents are Maxwellian, since induced current distributions have no net charge. These "first order" scatter fields excite second order



Structure Element with Two Terminals



Equivalent Circuit for Two Terminal Structure Element

scatter fields and so on, each higher order having a greatly reduced amplitude. All these scatter fields, when summed up, form a multiple scatter field which is Maxwellian. The currents and charges associated with the multiple scatter field are distributed over all the surfaces S^n (including S^i) and shall be denoted δi_k^i , q_k^{in} , the super and subscripts indicating that they are produced by the impressed current I_k^i and located on the element n.

The total field generated by $I_k^{\,i}$ satisfies on every element the boundary conditions

$$(j_{\omega}(\bar{A}_{k}^{i} + \delta \bar{A}_{k}^{i}) + \bar{7}(\hat{\phi}_{k}^{i} + \delta \hat{\phi}_{k}^{i})) \times d\bar{S}^{n} = 0 \ (n = 1, ..., i, ...N)$$
 III.20

where \bar{A}_k^i , $\hat{\phi}_k^i$ are the retarded potentials of the dominant current and charge distribution \bar{i}_k^i , q_k^i , and $\bar{s}\bar{A}_k^i$, $\delta\hat{\phi}_k^i$ those of the scatter current and charge distributions $\bar{s}\bar{i}_k^{in}$, $\bar{s}q_k^{in}$ combined. N is the number of elements.

Since the electric field of i_k^i , q_k^i satisfies the boundary condition on S^i , it follows from (20) for n = i that

$$(j\omega\delta\bar{A}_{k}^{\dagger} + \bar{\nabla}\delta\hat{\phi}_{k}^{\dagger}) \times d\bar{S}^{\dagger} = 0$$

Thus

$$\int_{S^{i}} \left[(j\omega \delta \vec{A}_{k}^{i} + \vec{\nabla} \delta \hat{\phi}_{k}^{i}) \cdot \vec{i}_{k}^{i} \right] dS^{i} = 0, \quad i = 1, \dots, N$$

$$k = 1, \dots, M_{i}$$
III.21

Using the relations III.7 and Gauss' theorem one obtains the "backscatter" potential due to the field interaction of the excited element with the other elements:

$$\hat{\beta}_{k,k}^{(i)} I_{k}^{i} = j\omega \int_{S^{i}} (3A_{k}^{i} \cdot I_{k}^{i} + 3\hat{\beta}_{k}^{i} a_{k}^{i}) dS^{i}$$
III.22

The letter F indicates field coupling, the first pair of indices $\binom{1}{k}$ refers to the terminal at which ϕ is determined, and the second pair to the terminal of the impressed current which produces this potential.

As shown in Appendix 3

$$\int_{S^{i}} (s\bar{A}_{k}^{i} \cdot \bar{i}_{k}^{i} + s\hat{\phi}_{k}^{i} q_{k}^{i}) dS^{i} = \sum_{n=1}^{N} \int_{S^{n}} (\bar{A}_{k}^{i} \cdot s\bar{i}_{k}^{i,n} + \hat{\phi}_{k}^{i} sq_{k}^{i,n}) dS^{n}$$
III.23

Furthermore, from the boundary conditions III.20 using the relations III.7 and Gauss' theorem, follows

$$\int_{S^n} \left[(\bar{A}_k^i + \bar{s} \bar{A}_k^i) \cdot \hat{s} \bar{i}_k^{n} + (\hat{s}_k^i + \bar{s} \hat{a}_k^i) \cdot \hat{s} q_k^{in} \right] dS^n = 0, \text{ for every } n \text{ including } i$$

$$III.24$$

The right-hand side of III.24 is zero since for scatter currents the right-hand of Gauss' theorem in III.5 is zero (see Appendix 5).

From the last three equations, one obtains the "back scatter" impedances

$$Z(F) = \frac{k_{,k}}{l_{k}^{i}} = -j\omega \left(\frac{1}{l_{k}^{i}}\right)^{2} \sum_{n=1}^{N} \int_{S^{n}} (s\bar{A}_{k}^{i} \cdot s\bar{i}_{k}^{in} + s\hat{s}_{k}^{i} \cdot sq_{k}^{in}) dS^{n}$$
III.25

which has to be added to the diagonal terms of the intrinsic impedance matrix $Z_{k,k}^{i,i}$, using the notation of this section. Generalization of III.25 to obtain the scatter field contributions to the off-diagonal terms is straightforward. One obtains

$$Z(F) = \frac{k,j}{k,j} = -j\omega \frac{1}{I_k^{i}I_j^{i}} \sum_{n=1}^{N} \int_{S^n} (\delta \overline{A}_k^{i} \cdot \delta \overline{I}_j^{i}, n + \delta \widehat{\phi}_k^{i} \delta q_j^{i}, n) dS^n$$
III.26

For k = j equation (26) transforms into III.25

Let us now determine the potential $\hat{\phi}(F)$ produced by the impressed current I_m^2 at the terminal $\binom{i}{k}$. Because of the boundary condition III.20

$$\int_{S_{1}} \left[j\omega (\bar{A}_{m}^{k} + \delta \bar{A}_{m}^{2}) + \bar{\gamma} (\hat{\beta}_{m}^{k} + S\hat{\phi}_{m}^{2}) \right] . \bar{i}_{k}^{i} d\bar{S}^{i} = 0, \qquad III.27$$

and

$$\int_{S^n} \left[j_{\omega} (\bar{A}_k^i + s\bar{A}_k^i) + \bar{\nabla} (\hat{\phi}_k^i + s\hat{\phi}_k^i) \right] \cdot \epsilon \bar{i}_m^i dS^n = 0$$
 III.28

where the second equation holds for every n including i. The potentials

 $\delta \bar{A}_k^i$ and $\delta \hat{\phi}_k^i$ characterize the scatter field which would be excited by $I_k^i.$

As before, we apply III.7 and Gauss' theorem to the above two equations to obtain

$$\hat{\phi}_{k,m}^{i,2} I_k^i = j\omega \left[\int_{S^i} (\bar{A}_m \, \bar{i}_k^i + \hat{\phi}_m^k q_k^i) \, dS^i + \int_{S^i} (\delta \bar{A}_m^k \cdot \bar{i}_k^i + \delta \hat{\phi}_m^k q_k^i) \, dS^i \right]$$
 III.29

$$0 = \int_{S^n} (\bar{A}_k^i \cdot \bar{i}_m^{\xi n} + \hat{\phi}_k^i q_m^{\xi n}) dS^n + \int_{S^n} (\delta \bar{A}_k^i \cdot \delta \bar{i}_m^{\xi n} + \delta \hat{\phi}_k^i \delta q_m^{\xi,n}) dS^n$$
 III.30

The first term in III.29 represents the contribution to the terminal potential

from the non-Maxwellian field of the dominant current and charge distribution \tilde{I}_m^L , q_m^2 , and the second term that from the scatter current and charge distributions \tilde{sI}_m^L , q_m^2 , δq_m^L , n

As shown in Appendix 3

$$\int_{S^{i}} (\delta \overline{A}_{m}^{2} \cdot \overline{i}_{k}^{i} + \delta \widehat{\phi}_{m}^{2} q_{k}^{i}) dS^{i} = \sum_{n=1}^{N} \int_{S^{n}} (\overline{A}_{k}^{i} \cdot \delta \overline{i}_{m}^{2}, n + \widehat{\phi}_{k}^{i} S q_{m}^{2}, n) dS^{n}$$
III.31

i, λ Expressing $\hat{\Phi}(F)$ in terms of an impedance k, m

$$\hat{\phi}(F) = Z(F) I_{m}^{\ell},$$

$$k,m k,m$$
III.32

the field coupling impedance between the terminals $\binom{i}{k}$ and $\binom{\mathfrak{L}}{m}$ becomes

$$Z_{k,m}^{i,2} = \frac{1}{I_{k}^{i}I_{m}^{2}} j_{\omega} \left[\int_{S_{i}} (\bar{A}_{m}^{\ell} \cdot \bar{i}_{k}^{i} + \hat{\phi}_{m}q_{k}^{i}) dS^{i} - \sum_{n=1}^{N} \int_{S_{i}} (\delta \bar{A}_{k}^{i} \cdot \delta \bar{i}_{m}^{2} + \delta \hat{\phi}_{k}^{i} \delta q_{m}^{2}, n) dS^{i} \right], i \neq 2$$
III.33

Equations III.26 and III.27 formulate the elements of the field coupling impedance matrix [Z(F)] which relates the scalar potentials $\hat{\phi}(F)$ at the terminals, k caused by field coupling, to the impressed currents:

$$[\hat{\phi}(F)] = [Z(F)][I], \ \hat{\phi}(F) = \sum_{z=1}^{N} \sum_{m=1}^{M_z} \hat{\phi}(F) = \sum_{z=1}^{N} \sum_{m=1}^{M_z} \sum_{k,m}^{1,2} \sum_{z=1}^{N} m=1 \ k,m$$
 III.34

IV. Complete Impedance Matrix [Z] of the Diakopted Antenna

The intrinsic impedance matrices of the individual structure elements can be combined into diagonal block impedance matrix $[\bar{Z}(I)]$ by writing the matrix elements $\bar{Z}_{k,j}$ (Eq. III.19) in the form $\bar{Z}_{k,j}^{i,i}(I)$. The superscript i identifies the terminals k and j as belonging to the element. The block matrix [Z(I)] whose elements $Z_{k,j}^{i,\ell}(I)$ are zero for $i \neq \ell$ is the "current coupling matrix" of the diakopted system, and relates the terminal potentials

$$\hat{\Phi}_{k}^{i}(I) = \sum_{i=1}^{N} \sum_{j=1}^{M_{i}} Z_{k,j}^{i,i}(I) I_{j}^{i}$$

due to current coupling to the M_{i} impressed currents of the element i.

The sum of the matrices [Z(I)] and [Z(F)], i.e.

$$[\tilde{Z}] = [Z(I)] + [Z(F)]$$
IV.7

forms the "complete impedance matrix" of the diakopted antenna, which formulates the relationship between the total terminal potentials

$$\hat{\Phi}_{k}^{\dagger} = \sum_{k=1}^{M} \sum_{m=1}^{M_{k}} \hat{\Phi}_{k,m}^{\dagger}$$

produced by current and field coupling, to all impressed currents. In matrix form

$$[\tilde{\phi}] = [\tilde{Z}][I]$$
 IV.2

If the matrix elements $Z_{k,j}^{i,i}(I)$ (eq. III.19) and $Z_{k,j}^{i,i}(F)$ (eq. III.26) are added, the resulting elements $\overline{Z}_{k,j}^{i,i}$ have the same formulation as those which pertain to field coupling between two different elements (eq. III.33). In other words, if the condition $i \neq \lambda$ is dropped, equation III.33 can be used as the general formulation for all the elements of the complete impendance matrix of the diakopted system.

Calculation of the impedances according to eq. III.33 requires, in principle, computation of the scatter current and charge distributions. However, numerical results obtained with this theory indicate that coupling by the scatter currents is a negligible effect. It has been found that coupling by the junction currents prevails over field coupling, and field coupling by the non-Maxwellian fields dominates over that by the (Maxwellian) scatter fields. In principle, the field coupling effect by the scatter currents can be obtained with an iterative procedure which is not discussed here.

If coupling by the scatter fields is neglected, the formula for the elements of the complete impedance matrix for the diakopted system reduces to

$$\bar{Z}_{k,m}^{i,2} = \frac{j_{\omega}}{\kappa_{k}^{i} I_{m}^{2}} \int_{S^{i}} (\bar{A}_{m}^{2} \cdot \bar{I}_{k}^{i} + \hat{\rho}_{m}^{i} q_{k}^{i}) dS^{i}$$

$$i, \ell = 1, 2, ..., N$$

$$k = 1, ..., M_{i}$$

$$m = 1, ..., M_{\ell}$$

$$IV.3$$

Thus all the matrix elements can be computed from the dominant current distributions.

The symmetry of the $[\bar{Z}]$, i.e.

$$\bar{Z}_{k,m}^{i,\lambda} = \bar{Z}_{m,k}^{\ell,i}$$
 IV.4

can be easily verified, by expressing in (III.33) the vector and scalar potentials by the current and charge distributions according to (III.1) and (III.12).

Equation (III.37) represents a stationary formulation of the matrix elements of $[\bar{Z}]$. This means first order errors in the current and charge distributions lead to second order errors in the impedances (Appendix 4).

V. <u>Interconnection of Diakopted Elements to Obtain Impedance of Assembled</u> Multi Element Antenna

The requirement for the diakopted structure with impressed currents to be performancewise identical with the assembled antenna are that:

- a) The sum of the impressed currents is zero at every junction between the structure elements and the continuity condition is satisfied at every input terminal. This requirement assures that the field of assembled antenna is Maxwellian.
- b) The scalar potentials at the interconnected terminals are equal.
- c) The potential difference between the input in terminals is equated with the driving voltage of the antenna source.

Imposing these junction conditions; the matrix equation (IV.2) yields a system of linear equations for the unknown junction currents and the input impedance of the antenna. Using network theory concepts the reduction of (IV.2) to this linear system of equations by enforcing the junction conditions can be formulated with a connection matrix [C] which reduces the number of potentials and currents of the diakopted structure to those of the actual structure [3]. As discussed in Section II, the impedance of the actual assembled antenna can be written as:

$$[\bar{z}]' = [c]_{+}[\bar{z}][c]$$

where $[\bar{Z}]$ and $[\bar{Z}]$ ' refers to the actual and diakopted structure respectively. The following example shows how [C] and $[\bar{Z}]$ ' are obtained.

Example

As an example we apply the diakoptic theory to an ordinary thin-wire dipole antenna and compare the results with the exact data available in the literature. To obtain a multielement structure we cut each wire in halves, as shown in Figure 8, and consider each half as a structure element. The diakopted dipole comprises two structure elements with one terminal and two structure elements with two terminals, so that the total number of terminals is six. The complete impedance matrix of the diakopted structure [Z] is therefore a 6x6 matrix. However there are only 8 different impedances because the four structure elements have been assumed to be alike.

Using the enumerations of Figure 8 the matrix equation (1..2) has the form

\$3 1	Z _o	z ₁	z ₃	Z ₄	Z ₆	Z ₇		13
\$ ¹ 2	Z	z _o	Z ₂	z ₃	Z ₅	^Z 6	i	12
\$1	Z ₃	z ₂	z _o	Ζ ₁	z ₃	Z ₄		I
32	Z ₄	Z ₃	Ζ _l	z _o	z ₂	z ₃		12
\$2 1	^Z 6	z ₅	Z ₃	z ₂	z _o	z ₁		12
\$ ⁴ ₂	z ₇	z ₆	Z ₄	z ₃	Z ₁	z _o		14.

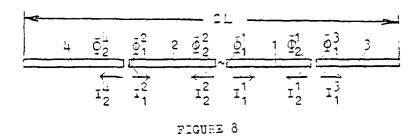
with

$$Z_0 = Z_{11}^{33} = Z_{22}^{11} = Z_{11}^{11} = Z_{22}^{22} = Z_{11}^{22} = Z_{22}^{44}$$

$$Z_1 = Z_{12}^{31} = Z_{21}^{13} = Z_{12}^{12} = Z_{21}^{21} = Z_{12}^{24} = Z_{21}^{42}$$

$$Z_2 = Z_{21}^{11} = Z_{12}^{11} = Z_{21}^{22} = Z_{12}^{22}$$

$$z_3 = z_{11}^{31} = z_{11}^{13} = z_{11}^{12} = z_{11}^{21} = z_{22}^{21} = z_{22}^{21} = z_{22}^{24} = z_{22}^{24}$$



Thin Wire Dipole Treated as a Diakopted Four Element System

$$Z_4 = Z_{12}^{32} = Z_{21}^{23} = Z_{12}^{14} = Z_{21}^{41}$$

$$Z_5 = Z_{21}^{12} = Z_{12}^{21}$$

$$Z_6 = Z_{11}^{32} = Z_{11}^{23} = Z_{22}^{14} = Z_{22}^{41}$$

$$Z_7 = Z_{12}^{34} = Z_{21}^{43}$$

If coupling by the scatter currents is neglected, the darkened portion of the impedance matrix Z is the current coupling matrix Z(I).

The interconnection conditions require

$$I_{1}^{3} = -I_{2}^{1} = I_{1} \qquad \hat{\phi}_{1}^{3} = \hat{\phi}_{2}^{1} = \phi_{1}$$

$$I_{2}^{2} = -I_{1}^{1} = -I_{0} \qquad \hat{\phi}_{1}^{1} - \hat{\phi}_{2}^{2} = V_{0}$$

$$I_{2}^{4} = -I_{1}^{2} = I_{2} \qquad \hat{\phi}_{2}^{4} = \hat{\phi}_{1}^{2} = \phi_{3}$$

where \mathbf{I}_0 , \mathbf{V}_0 are input current and driving voltage of the antenna.

Because of the symmetry of the antenna

$$I_3 = I_2$$
; $\phi_1 = -\phi_3$; $\dot{\phi}_2^2 = -\phi_1^1$

Current and voltage matrix of the interconnected antenna are

$$[I]' = \begin{bmatrix} I_0 \\ I_1 \end{bmatrix}, [\hat{\phi}]' = \begin{bmatrix} V_0 \\ 0 \end{bmatrix}$$

Thus, the interconnection matrix becomes

$$\begin{bmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} & \begin{pmatrix} 1 \\ 2 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

$$\begin{bmatrix} c \end{bmatrix}_{t} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} & \begin{bmatrix} 0 & 0 & 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & -1 \end{bmatrix}$$

and the impedance matrix of the assembled antenna

r 7 A	$(z_0 - z_1)$	$(2Z_3 - Z_2 - Z_4)$				
	$(2Z_3 - Z_2 - Z_4)$	$(2Z_0 - 2Z_1 - Z_5 + 2Z_6 - Z_7)$				

For the numerical calculation of the impedances, the following simplifying assumptions have been made:

- a) coupling by the scatter currents is negligible
- b) the dominant current distributions which, in this example, are the same for all the elements, can be approximated by linear current distributions (uniform charge distribution).

Although the latter approximation is rather crude, one should expect reasonable results if the wire sections are short compared with the wave length, because all the impedance formulas are stationary expressions. Linear current distribution permits analytic formulations of all the impedances Z_0 , Z_1 , Z_2 etc., and numerical calculations with a pocket calculator (such as HP 25). The results obtained are presented in Figure 9. The curves are plots (from a table by King [4]) of the real and the imaginary part of the input impedance of a dipole for $\ln \frac{2L}{a} = 5$ as a function of kL; 2L is the total length of the dipole, and a the wire radius. The crosses mark the values of the input impedance from (45) with the above assumptions. For kL < 0.8 the deviation of the real part of the input impedance from the exact value is less than 10% and for the imaginary part less than 1%. From this one can conclude that the linear approximation for the dominant current distribution is adequate if the length of a wire section is <1/15\u03b1. This has been born out by computer results which were obtained when each dipole wire was diakopted into 4 equal sections. These results are marked in Figure 9 by dots and are in good agreement with the exact curves even beyond the resonance of the antenna.

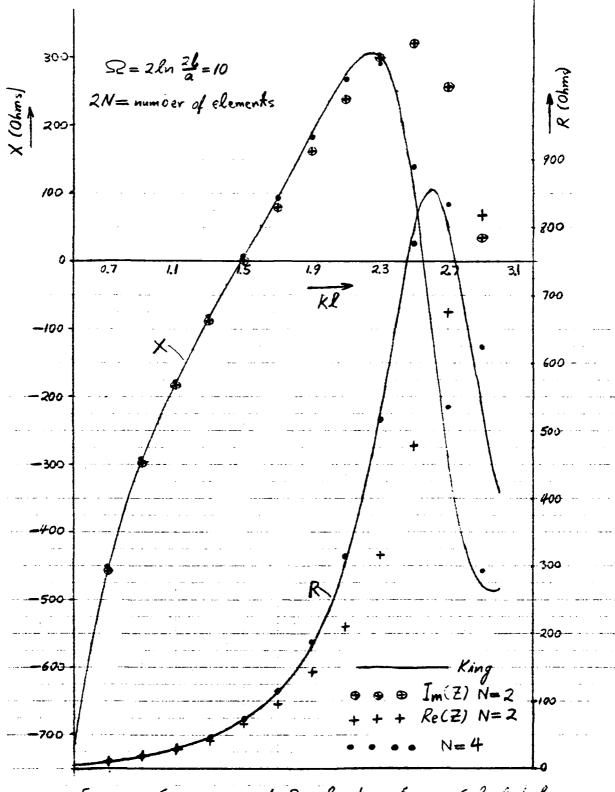


Fig. 9. : Comparison of Dipole Impertance Calculated with Diakoptic Theory us. King

Resistance

Fig. 9b. : Comparison of dipole impedance execulated with diakoptic theory is King

A STATE OF THE STA

A CONTRACTOR OF THE PARTY OF TH

Fig. 9c. : Comparison of Apole impedance calculated with charge a cherry of King

VI. Receiving Antennas

In the case of a receiving antenna the excitation is produced by an external field E(e). The source element is replaced by the input impedance of the receiver. All the quantities associated with the external field should be characterized by the subscript e.

The boundary conditions on the element i yields

$$\int_{S^{i}} \left\{ \left[j\omega \bar{A}(e) + \bar{\nabla} \hat{\phi}(e) - \bar{E}(e) \right] \cdot \bar{i}(e) \right\} dS^{i} = 0$$

or

$$I_{k}^{i} \psi_{k}^{i}(e) = j\omega \int_{S^{i}} (\bar{A}(e) \cdot \bar{i}_{k}^{i} + \hat{\Phi}(e)q_{k}^{i})dS^{i} - \int_{S^{i}} \bar{E}(e) \, \bar{i}(e)dS^{i}$$
 VI.1

where i_k^i , q_k^i are the dominant current and charge distributions which the impressed current I_k^i would produce on this element. $\Phi_k^i(e)$ the potential at the junction i,k caused by the external field. From the boundary condition for the dominant current distribution one obtains

$$\int_{S^{i}} \left[\left(j \omega \bar{A}_{k}^{i} + \text{grad } \hat{\phi}_{k}^{i} \right) \cdot \bar{i}(e) \right] dS^{i} = j \omega \int_{S^{i}} \left(\bar{A}_{k}^{i} \bar{j}(e) + \hat{\phi}_{k}^{i} q(e) \right) dS^{i} = 0 \qquad \text{VI.2}$$

since i(e) is zero at the junction. As shown in Appendix 2

$$\int_{S^{\hat{i}}} (\bar{A}_{k}^{\hat{i}} \cdot \bar{i}(e) + \hat{\Phi}_{k}^{\hat{i}}q(e))dS^{\hat{i}} = \int_{S^{\hat{i}}} (\bar{A}(e) \cdot \bar{i}_{k}^{\hat{i}} + \hat{\Phi}(e)q_{k}^{\hat{i}})dS^{\hat{i}}$$
 VI.3

Thus Equation (VI.1) reduces to

$$I_{k}^{i} \hat{\phi}_{k}^{i}(e) = - \int \bar{E}_{(e)}^{i} \hat{A}_{k}^{i} dS^{i}$$
 VI.4

The potential $\hat{\Phi}_k^i(e)$ produced by an external field at the junction i,k is given by the scalar product between the external field $\tilde{\mathbf{E}}(e)$ and the dominant current distribution function i_k^i/I_k^i , integrated over the surface S^i of the element. In the network presentation excitation by an external field is equivalent to voltage sources V(e) in series with the terminal voltages of the intrinsic impedance networks.

VII Numerical Results and Computer Programs

A. Cylindrical Wire

A.1. <u>Dominant Current Distribution</u>, <u>Dominant Charge Distribution and Intrinsic Impedance Calculations</u>

$$i(x) = Current density$$

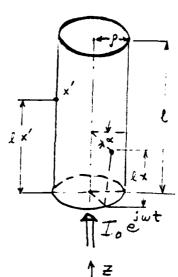
$$\lambda$$
 = wave length

$$i_0 = i(0) = I_0/2\pi\rho$$

$$i(x)$$
 = current distribution at x

$$\omega = \frac{2\pi c}{\lambda}$$
, $k = \frac{2\pi}{\lambda}$, $k\ell = \beta$

d =
$$\sqrt{(x-x^{1})^{2} + 4(\frac{\rho}{\ell})^{2} \sin^{2}(\alpha/2)}$$



The vector and scalar potentials at an observation point x are:

$$A_{z}(x) = \frac{\mu}{4\pi} \int_{0}^{1} \int_{0}^{2\pi} i(x') \frac{e^{-j\beta d}}{d} \rho d\alpha dx'$$

$$\hat{\phi}(x) = \frac{1}{4\pi\epsilon \ell} \int_{0}^{1} \int_{0}^{2\pi} \frac{1}{-j\omega} \frac{d}{dx'} i(x') \frac{e^{-j\beta d}}{d} \rho d\alpha dx'$$

Component of electric current field intensity parallel to the surface of the wiere is zero, and can be written as:

$$-(j\omega A_z(x) + \frac{1}{\ell} \frac{d\hat{\phi}(x)}{dx}) = 0$$

or

$$\int_{0}^{1} \int_{0}^{2\pi} \left[\frac{d}{dx'}, i(x') \frac{d}{dx'}, \left(\frac{e^{-j\beta d}}{d} \right) + \beta^{2}i(x') \frac{e^{-j\beta d}}{d} \right] d\alpha dx' = 0 \qquad \text{VII.1}$$

Let

$$\frac{d}{dx} i(x) = a_{j} \cos \beta (1-x_{j}) \qquad x_{j-1} < x < x_{j}$$

$$x_{j} = \frac{1}{N} j \qquad j = 1, \dots, N-1$$
VII.2

Integrating:

$$i(x_{j-1}) = i(x_{j}) + \int_{a_{j}}^{x_{j-1}} a_{j} \cos \beta(1-x) dx$$

$$= i(x_{j}) + \frac{a_{j}}{\beta} (-\sin \beta(1-x_{j-1}) + \sin \beta(1-x_{j}))$$

$$i(x_{N}) = 0$$

Thus

$$i(x) = \sum_{\lambda=j+1}^{N} \left[\frac{a_{\lambda}}{\beta} \left(-\sin\beta(1-x_{\lambda-1}) + \sin\beta(1-x_{\lambda}) \right) + \frac{a_{j+1}}{\beta} \left(\sin\beta(1-x_{j}) - \sin\beta(1-x) \right) \right]$$

Substituting VII.2 and VII.3 into VII.1 and choosing

$$x = \frac{(i-\frac{1}{2})}{N}$$
, $i = 1,2,...,N-1$, we obtain

$$\sum_{j=1}^{N} a_{j}(g_{ji} + k_{ji} + \sum_{\lambda=1}^{j} k_{\lambda ji}) = 0 i = 1,...,N-1$$

$$\sum_{j=1}^{N} a_{j}(\frac{1}{\beta} \sin\beta(1-x_{j}) - \frac{1}{\beta} \sin(1-x_{j-1})) = i_{0}$$
VII.4

VII.3

whe re

$$g_{ji} = \left[\int_{x_{j-1}}^{x_j} \int_{0}^{\pi} \cos\beta(1-x') \frac{d}{dx'} \left(\frac{e^{-j\beta d}}{d} \right) \beta d\alpha dx' \right]_{x=x_i}$$
 VII.5

$$k_{ji} = \left[\int_{x_{j-1}}^{x_j} \int_0^{\pi} \beta \frac{e^{-j\beta d}}{d} \left(\sin\beta(1-x_{j-1}) - \sin\beta(1-x) \right) \rho d\alpha dx' \right]_{x=x_i} \quad \text{VII.6}$$

$$\rho_{\lambda j i} = \left[\int_{x_{j-1}}^{x_j} \int_{0}^{\pi} \beta \frac{e^{-j\beta d}}{d} \left(\sin\beta(1-x_{\lambda}) - \sin\beta(1-x_{\lambda-1}) \right) \rho d\alpha dx' \right]_{x=x_j} VII.7$$

Equation VII.4 is simultaneously solved to obtain a_1, \ldots, a_N and hence the current and charge densities.

Quantities VII.5 to VII.7 are computed by quadrature integration formula. These expressions can be considerably simplified when $i \neq j$, resulting in computation saving.

A.2 Impedance Calculations

$$Z = \frac{\widehat{\phi}(x)}{I_o} = \frac{j\omega}{I_o^2} 2\pi\rho\ell \int_0^1 i(x') A_z(x') + \frac{j}{\omega} \frac{d}{dx} i(x') \widehat{\phi}(x')dx' \quad VII.8$$

$$Z = \frac{j}{4\pi^2\beta_0^{\frac{1}{2}}} \left(\frac{\mu}{\epsilon}\right)^{\frac{1}{2}} \int_0^1 \int_0^1 \left[\beta^2 i(x) i(x') \frac{e^{-j\beta d}}{d}\right]$$
$$-\frac{d}{dx} i(x) \frac{d}{dx'} i(x') \left(\frac{e^{-j\beta d}}{d} + j\beta\right) d\alpha dx dx'$$

or

$$Z = \frac{j}{4\pi\beta i_0^2} \left(\frac{\mu}{\epsilon}\right)^2 \sum_{i=1}^{N} \sum_{j=1}^{N} \left[\left(\beta^2 i_i i_j - q_i q_j\right) d_{ij} - \frac{j\beta q_i q_j}{N^2} \right]$$
 VII.8

where

$$i_i = i(x)$$
 $\int_{x = i - \frac{1}{2}}$, $q_i = \frac{d}{dx}i(x)$ $\int_{x = i - \frac{1}{2}}$

$$i_{j} = i(x')$$
 $\Big]_{x' = j - \frac{1}{2}}$, $q_{j} = \frac{d}{dx}i(x')\Big]_{x' = j - \frac{1}{2}}$

$$d_{ij} = \int_{x_{j-1}}^{x_j} \int_{x_{i-1}}^{x_i} \frac{e^{-j\beta d}}{d} dx dx'$$

```
10 "SOLUTION OF THE INTEGRAL EQUATION FOR THE CURRENT IN A DIPOLE OR MON
OFFILE
20 SUBROUTINE INTEG(A,B,C,D,LX,MY,X1,BETA,S,FUNCTI,RHO,DELTA,THETA)
30 REAL*8 Z, WEIGHT, X1, BETA, XI, YJ, RHO, DELTA, THETA
40 COMPLEX#16 FUNC, S, FUNCTI
50 DIMENSION Z(24), WEIGHT(24)
60 DATA Z/0.577350269,0.0,0.774596669,%
70 0.339981044,0.861136312,0.0,0.538469310,%
50 0.906179846,0.238619186,0.661209387,0.932469514,%
90 0.148874339,0.433395394,0.679409568,0.865063367,%
100 0.973906529,0.0,0.201194094,0.394151347,%
110 0.570972173,0.724417731,0.848206583,0.937273392,%
120 0.987992518/
130 DATA WEIGHT/1.0,0.888888889,0.555555556,%
140 0.652145155,0.347854845,0.568888889,0.478628671,%
150 0.236926885,0.467913935,0.360761573,0.171324493,0.295524225,0.269266
719,%
160 0.219086363,0.149451349,%
170 0.066671344,0.1012891,0.198431485,0.186161000,%
180 0.166269206,0.139570678,0.107159221,0.070366047,%
190 0.030753242/
200 S=(0.0,0.0)
210 DO 10 I=17,24
220 DO 10 I1=1,LX
230 DO 10 I2=1,2
240 DO 10 J=17,24
250 DO 10 J1=1,MY
260 DO 10 J2=1,2
270 30 STEPY=(D-C)/MY
280 D1=C+STEPY*J1
390 C1=D1-STEPY
300 STEPX=(B-A)/LX
310 B1=A+STEPX*I1
320 A1=B1-STEPX
330 XI = ((-1)**I2*Z(I)*(B1-A1)+B1+A1)/2
340 YJ=((-1)**J2*Z(J)*(D1-C1)+D1+C1)/2
350 FUNC=FUNCTI(X1,XI,YJ,BETA,RHO,DELTA,THETA)
360 10 S=S+(B1-A1)*(D1-C1)/4*WEIGHT(I)*WEIGHT(J)*FUNC
370 RETURN
380 END
390 SUBROUTINE SIMO (A,B,N,KS)
400 REAL*8 A,B,BIGA,TOL,SAVE
410 DIMENSION A(N,N),B(N)
420 "FORWARD SOLUTION"
430 TOL=0.0
440 KS=0
450 DO 65 J=1,N
450 JY=J+1
470 BIGA=0
480 DO 30 I=J:N
190 "SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN"
500 IF(DABS(BIGA).GE.DABS(A(I.J)))GO TO 30
```

510 BIGA=A(I,J)

```
520 IMAX=I
530 30 CONTINUE
540 "TEST FOR PIVOT LESS THAN TOLERANCE
                                            SINQULAR MATRIX"
550 IF(DABS(BIGA)>TOL)GO TO 40
560 KS=1
570 RETURN
580 "INTERCHANGE ROWS IF NECESSARY"
590 40 I1=J+N*(J-2)
400 DO 50 K=J•N
610 SAVE=A(J,K)
620 A(J,K)=A(IMAX,K)
630 A(IMAX,K)=SAVE
440 "DIVIDE EQUATION BY LEADING COEFFICIENT"
550 50 A(J,K)=A(J,K)/BIGA
550 SAVE=B(IMAX)
570 B(IMAX)=B(J)
580 R(J)=SAVE/BIGA
590 "ELIMINATE NEXT VARIABLE"
700 IF(J=N)G0 TO 70
/10 DO 65 IX=JY•N
720 DO 60 JX=JY•N
730 60 A(IX_{J}X) = A(IX_{J}X) - A(IX_{J}X) \times A(I_{J}XX)
740 65 B(IX)=B(IX)-(B(J)*A(IX,J))
750 "BACK SOLUTION"
760 70 NY=N-1
770 IT=N*N
780 DO 80 J=1,NY
790 IB=N-J
800 IC=N
810 DO 80 K=1,J
820 B(IB)=B(IB)-A(IB,IC)*B(IC)
330 80 IC=IC-1
840 RETURN
350 END
860 SUBROUTINE INTEGR(INITIA, FINAL, NUMINT, KERNEL, RESUL, X1, X2, BETA, RHO, DE
LTA, THETA)
870 REAL*8 Z(7), WEIGHT(7), INITIA, FINAL, INTERU, A, B, BETA, X1, RHO, X2, DELTA, T
880 COMPLEX*16 STRESULTKERNEL
890 DATA Z /0.201194094,0.394151347,%
900
            0.570972173,0.724417731,0.848206583,0.937273392,%
910
            0.987992518/
920 *
930 "
940 DATA WEIGHT /0.198431485,0.186161000,%
950
                  0.166269206,0.139570678,0.107159221,0.070366047,%
960
                  0.030753242/
970 .
980 INTERV=(FINAL-INITIA)/NUMINT
990 A=INITIA
1000 RESUL=(0.0D00,0.0D00)
1010 UO 20 J=1, NUMINT
1020 B#A+INTERV
```

AND TERCHINA

```
1030 *
1/40 S=(0.0000,0.0000)
1050 DO 10 I=1,7
1060 10 S=S+WEIGHT(I)*(KERNEL(X1,X2)
                                       _{f}(Z(I)*(B-A)+B+A)/2_{f}
                                                               BETA, RHO, DE
LTA, THETA) + KERNEL (X1, X2
                           *(-Z(I)*(B-A)+B+A)/2*
                                                   BETA, RHO, DELTA, THETA))
1070 S=S+0.202578242*KERNEL(X1:X2
                                                 BETA, RHO, DELTA, THETA)
                                     y(B+A)/2;
1080 S=(B-A)/2.0*S
1090 A=A+INTERV
1100 20 RESUL=RESUL+S
1110 RETURN
1120 END
1130
1140 *
1150 FUNCTION G(X1,X2,ALPHA,BETA,RHO,DELTA,THETA)
1160 COMPLEX*16 G,E,E1
1170 REAL*8 X1,X2,BETA,RHO,ALFHA,D,D1,DELTA,THETA
1180 D=DSQRT((X1-X2)**2+(2.0*RHO*DSIN(ALPHA/2.0))**2)
1190 D1=DSQRT((X1+X2+DELTA)**2+(2.0*RHO*DSIN(ALFHA/2.0))**2)
1200 E=(1.0D00,0.0D00)*DCOS(BETA*D)-(0.0D00,1.0D00)*DSIN(BETA*D)
1210 E1=(1.0D00,0.0D00)*DCOS(BETA*D1)-(0.0D00,1.0D00)*DSIN(BETA*D1)
1220 G=(-E/D**2-(0,0D00,1.0D00)*BETA*E/D)*(X1-X2)/D-THETA*(-E1/D1**2-(0.
ODOO,1.0DOO)*BETA*E1/D1)*(X1+X2)/D1
1230 RETURN
1240 END
1250
1260 FUNCTION H(X1, X2, ALPHA, BETA, RHQ, DELTA, THETA)
1270 COMPLEX#16 H,E,E1
1280 REAL*8 X1,X2,BETA,RHO,ALPHA,D,D1,DELTA,THETA
1290 D=DSQRT((X1-X2)**2+(2.0*RHO*DSIN(ALFHA/2.0))**2)
1300 D1=DSQRT((X1+X2+DELTA)**2+(2.0*RHD*DSIN(ALPHA/2.0))**2)
1310 E=(1.0D00,0.0D00)*DCOS(BETA*D)~(0.0D00,1.0D00)*DSIN(BETA*D)
1320 E1=(1.0D00,0.0D00)*DCOS(BETA*D1)-(0.0D00,1.0D00)*DSIN(BETA*D1)
1330 H=E/D+THETA*E1/D1
1340 RETURN
1350 END
1351 FUNCTION HPR(ALPHA,X1,X2,BETA,RHO,DELTA,THETA)
1352 COMPLEX#16 HPR,E,E1
1353 REAL*8 X1,X2,BETA,RHO,ALPHA,D,D1,DELTA,THETA
1354 D=DSQRT((X1-X2)**2+(2.0*RHD*DSIN(ALPHA/2.0))**2)
1355 D1=DSQRT((X1+X2+DELTA)**2+(2.0*RHO*DSIN(ALPHA/2.0))**2)
1356 E=(1.0D00,0.0D00)*DCOS(BETA*D)~(0.0D00,1.0D00)*DSIN(BETA*D)
1357 E1=(1.0D00,0.0D00)*DCOS(BETA*D1)-(0.0D00,1.0D00)*DSIN(BETA*D1)
1358 HFR=E/D+THETA*E1/D1
1359 RETURN
1360 END
1361 FUNCTION H1(ALPHA,X1,X2,BETA,RHO,DELTA,THETA)
1370 COMPLEX*16 H1, E, E1
1380 REAL*S X1,X2,BETA,RHO,ALPHA,D,D1,DELTA,THETA
1390 D=DSQRT((X1-X2)**2+(2.0*RHO*DSIN(ALPHA/2.0))**2)
1400 D1=DSQRT((X1+X2+DELTA)**2+(2.0*RHO*DSIN(ALPHA/2.0))**2)
1410 E=(1.0D00,0.0D00)*DCDS(BETA*D)-(0.0D00,1.0D00)*DSIN(BETA*D)
1420 E1=(1.0D00,0.0D00)*DCOS(BETA*D1)-(0.0D00,1.0D00)*DSIN(BETA*D1)
1430 H1=E/D-THETA*E1/D1+(1.0-THETA)*(0.0D00,1.0D00)*8ETA
1440 RETURN
```

45

```
1450 END
1460 FUNCTION IMPKER(X1,X2,ALFHA,BETA,RHO,DELTA,THETA)
1470 COMPLEX*16 IMPKER, E, E1
1480 REAL*8 X1,X2,ALPHA,BETA,RHO,D,DELTA,THETA,D1
1490 D=DSQRT((X1-X2)**2+(2.0*RHO*DSIN(ALPHA/2.0))**2)
1500 D1=DSQRT((X1+X2+DELTA)**2+(2.0*RHO*DSIN(ALPHA/2.0))**2)
1510 E=(1.0D00,0.0D00)*DCOS(BETA*D)-(0.0D00,1.0D00)*DSIN(BETA*D)
1520 E1=(1.0D00,0.0D00)*DCOS(BETA*D1)-(0.0D00,1.0D00)*DSIN(BETA*D1)
1530 IMPKER=DCOS(BETA*(1.0-X2))*(E/D-THETA*E1/D1+(1.0-THETA)*(0.0D00,1.0
DOO) *BETA)
1540 RETURN
1550 END
1560 EXTERNAL G,H,IMPKER,H1,HPR
1570 COMPLEX*16 RESG, RESH, G, H, A (40, 40), AB (40), RESUL, CHAR (30), CURR, IMPKER
%T,SUMH,ZFR,RESU1,CUR(30),IMP,H1,RESH1,CHARGE,HPR
1580 REAL*8 X1, X2, STEP, BETA, RHO, X, REALPA, IMAGPA, REAATB, IMAATB, RA(1600), R
%(50),ATA(1600),ATB(50),MAGCHA,MAGCUR,IDCHA,IDCUR,DELTA,THETA,ALPHA
1590 WRITE (6,2200)
1600 READ (5,*) N, BETA, RHO, DELTA, THETA
1610 IF (THETA-0.5) 171,171,172
1620 171 WRITE (6,1171)
1630 GO TO 173
1640 172 WRITE (6,1172)
1650 173 WRITE (6,999) BETA, RHO, DELTA
1660 STEP=1.0/N
1670 NTIM2=2*N
1680 NMIN1=N-1
1690 X1=STEP
1700 DO 10 I=1,NMIN1
1710 X2=STEP/2.0
1720 SUMH=(0.0,0,0.0)
1730 DO 20 J=1,N
1740 CALL INTEGR(0.0,3.1415,1,G,RESG,X1,X2,BETA,RHO,DELTA,THETA)
1750 CALL INTEGR(0.0,3.1415,1,H,RESH,X1,X2,BETA,RHO,DELTA,THETA)
1760 SUMH=SUMH+RESH
1770 A(I,J)=(DSIN(BETA*(1.0-(X2-STEP/2.0)))-DSIN(BETA*(1.0-(X2+STEP/2.0)
)))/BETA*RESG+(DSIN(BETA*(1.0-(X2-STEP/2.0)))-DSIN(BETA*(1.0-X2)))*BETA/
N*RESH+(DSIN(BETA*(1.0-(X2+STEP/2.0)))-DSIN(BETA*(1.0-(X2-STEP/2.0))))*B
ETA/N*SUMH
1780 20 X2=X2+STEP
1790 10 X1=X1+STEP
1800 X=STEP
1810 DO 30 J=1,N
1820 A(N,J)=(DSIN(BETA*(1.0-X))-DSIN(BETA*(1.0-(X-STEF))))/BETA
1830 30 X=X+STEP
1840 DO 40 I=1,N
1350 40 AB(I)=I/N*1.0
1860 DO 50 I=1,N
1870 DO 50 J=1,N
1380 REALPA=(A(I,J)+DCONJG(A(I,J)))/2.0D00
1890 IMAGPA=(A(I,J)-DCONJG(A(I,J)))/2.0D00/(0.0D00,1.0D00)
1900 REAATB=(AB(I)+DCONJG(AB(I)))/2.0D00
1910 IMAATB=(AB(I)-DCONJG(AB(I)))/2.0D00/(0.0D00,1.0D00)
1920 RA(I+(J-1)*NTIM2)=REALPA
```

```
1930 RA(I+(J+N-1)*NTIM2)=-IMAGPA
1940 RA(I+N+(J-1)*NTIM2)=IMAGPA
1950 RA(I+N+(J+N-1)*NTIM2)=REALPA
1960 RB(I)=REAATB
1970 RB(I+N)=IMAATB
1980 50 CONTINUE
1990 DO 410 I=1,NTIM2
2000 DO 410 J=1,NTIM2
2010 ATA((J-1)*NTIM2+I)=0.0D00
2020 DO 410 K=1,NTIM2
2030 410 ATA((J-1)*NTIM2+I)=ATA((J-1)*NTIM2+I)+RA((I-1)*N*2+K)*RA((J-1)*
N*2+K)
2040 DO 420 I=1,NTIM2
2050 ATB(I)=0.0D00
2060 DO 420 K=1,NTIM2
2070 420 ATB(I)=ATB(I)+RA((I-1)*N*2+K)*RB(K)
2080 DO 430 I=1,NTIM2
2090 430 RB(I)=ATB(I)
2100 CALL SIMQ(ATA, RB, NTIM2, KS)
2110 WRITE (6,3000)
2120 WRITE (6,100)
2130 DO 110 I=1,N
2140 110 WRITE (6,*) RB(I), RB(I+N)
2150 WRITE (6,100)
2140 WRITE (6,2000)
2165 WRITE (6,6000)
2170 X=STEP/2.0
2190 DO 150 I=1,N
2190 CHAR(I)=(RB(I)*(1.0D00,0.0D00)+RB(I+N)*(0.0D00,1.0D00))*DCOS(BETA*(
1.0~X))
2195 CHARGE=CHAR(I)/BETA
2200 MAGCHA=CDABS(CHAR(I))
2210 MAGCHA=MAGCHA/BETA
2220 WRITE (6,5000) X, CHARGE, MAGCHA
2230 150 X=X+STEP
2240 WRITE (6,100)
2250 WRITE (6,2100)
2255 WRITE (6,6000)
2260 CURR=(0.0D00,0.0D00)
2270 X=1.0
2280 DO 160 I=1,N
2290 CURR=CURR+(DSIN(BETA*(1.0-X))-DSIN(BETA*(1.0-(X-STEP))))/BETA*(RB(N
-I+1)*(1.0D00,0.0D00)+RB(N-I+1+N)*(0.0D00,1.0D00))
2300 X=X-STEP
2310 MAGCUR=CDABS(CURR)
2320 CUR(N-I+1)=CURR
2330 160 WRITE (6,5000) X, CURR, MAGCUR
2340 WRITE (6,100)
2350 WRITE (6,2300)
2360 "ZPR IS THE POTENTIAL AT THE END
2370 Z=(0.0D00,0.0D00)
2380 ZPR=(0.0D00,0.0D00)
2390 X2=0.0D00
```

2400 DO 170 I=1.N

```
2410 CALL INTEG(X2,X2+STEP,0.0,3.1415,1,1.0.0,BETA,RESUL,IMPKER,RH0,UELT
A.THETA)
2420 CALL INTEG(X2,X2+STEP,0.0,3.1415,1,1,1.0,BETA,RESU1,IMPKER,RHO,DELT
A.THETA)
2430 Z=Z+RESUL*(RB(I)*(1.0D00,0.0D00)+RB(I+N)*(0.0D00,1.0D00))
2440 ZPR=ZPR+RESU1*(RB(I)*(1.0D00,0.0D00)+RB(I+N)*(0.0D00,1.0D00))
2450 170 X2=X2+STEP
2460 Z=Z*377.0*(0.0D00,1.0D00)/4.0/3.1415**2/BETA
2470 ZFR=ZFR*377.0*(0.0D00,1.0D00)/4.0/3.1415**2/BETA
2480 ALPHA=1.0471
2490 IMP=(0.0D00,0.0D00)
2500 X1=STEP/2.0
2510 DO 66 J=1,N
2520 X2=STEP/2.0
2530 DO 55 I=1,N
2540 D=DSQRT((X1-X2)**2+(2.0*RHO*DSIN(ALPHA/2.0))**2)
2550 D1=DSQRT((X1+X2+DELTA)**2+(2.0*RHO*DSIN(ALPHA/2.0))**2)
2560 E=(1.0D00,0.0D00)*DCDS(BETA*D)-(0.0D00,1.0D00)*DSIN(BETA*D)
2570 E1=(1.0D00,0.0D00)*DCOS(BETA*D1)-(0.0D00,1.0D00)*DSIN(BETA*D1)
2572 CALL INTEG(X1-STEP/2.0,X1+STEP/2.0,X2-STEP/2.0,X2+STEP/2.0,1,1,0.78
54, BETA, RESH, HPR, RHO, DELTA, THETA)
2573 CALL INTEG(X1-STEP/2.0,X1+STEP/2.0,X2-STEP/2.0,X2+STEF/2.0,1,1,0.78
54, BETA, RESHI, HI, RHO, DELTA, THETA)
2580 IMP=IMP+BETA**2*CUR(I)*CUR(J)*RESH-((1.0D00,0.0D00)*RB(I)+(0.0D00,1
.ODOO)*RB(I+N))*((1.ODOO,0.ODOO)*RB(J)+(0.ODOO,1.ODOO)*RB(J+N))*DCOS(BET
A*(1.0D00-X1))*DCOS(BETA*(1.0D00-X2))*RESH1
2590 55 X2=X2+STEP
2600 66 X1=X1+STEP
2610 IMP=IMP*(0.0D00,1.0D00)*377.0/4.0/3.1415/BETA*(1.0D00+THETA)
2640 WRITE (6,*) IMP
2650 WRITE (6,2400)
2660 WRITE (6,*) ZPR
2670 100 FORMAT(/
2680 2000 FORMAT(/ DISTANCE
                                       CHARGE ()
2390 2100 FORMAT(/ DISTANCE
                                      CURRENT()
2693 6000 FORMAT(' DISTANCE REAL
                                     IMAG
                                            MAGN()
2700 2200 FORMAT(' N.BETA, RHO, DELTA, THETA')
2710 2300 FORMAT(/ IMPEDANCE/)
2720 5000 FORMAT(F6.3,3F8.3)
2730 3000 FORMAT(/
                    1)
2740 2400 FORMAT(' FOTENTIAL AT THE END')
2750 1171 FORMAT(' MONOPOLE')
2760 1172 FORMAT(' DIPOLE')
2770 999 FORMAT(' BETA=',F8.4,'RADIUS=',F8.4,'GAP=',F8.4)
TOPE OBTE
2790 END
```

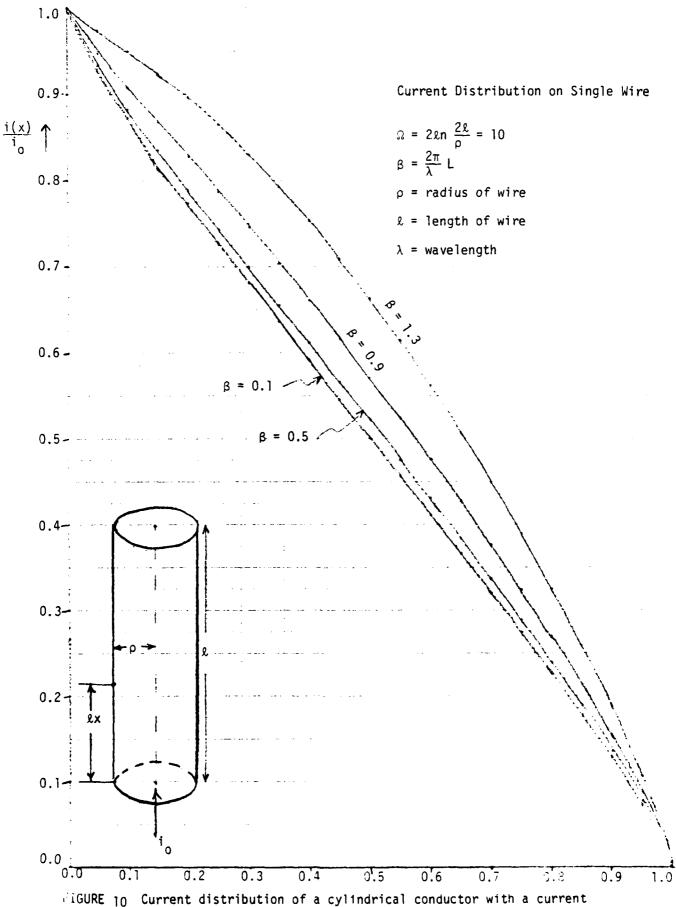
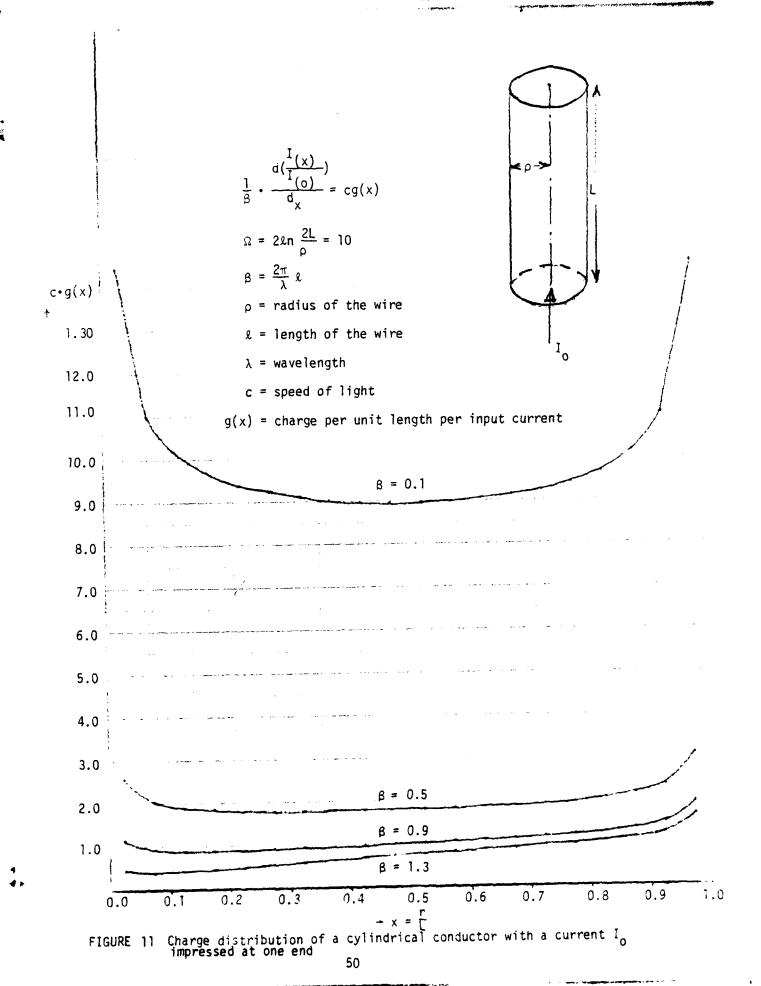
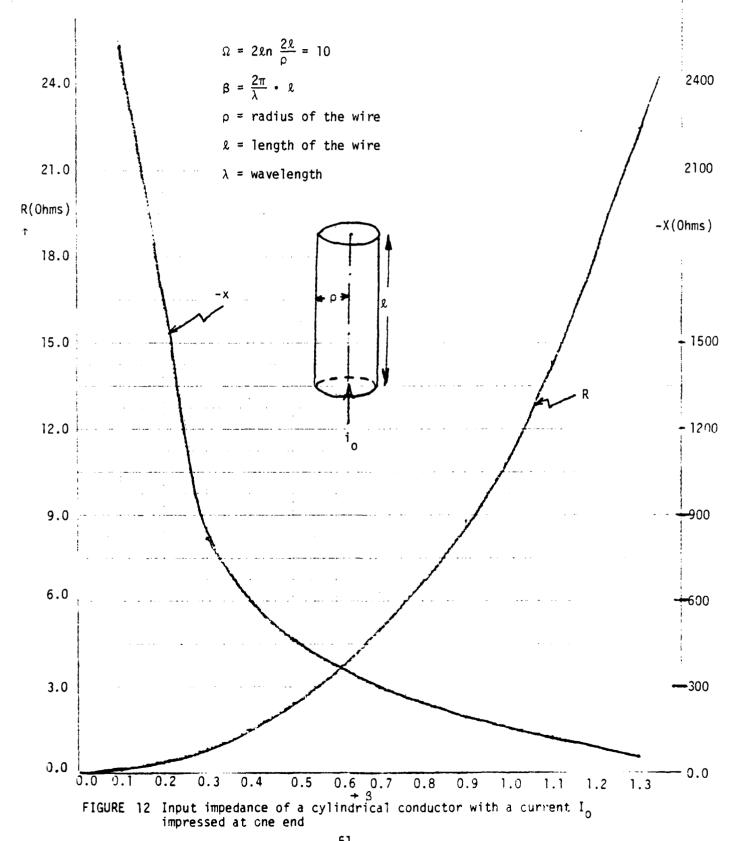
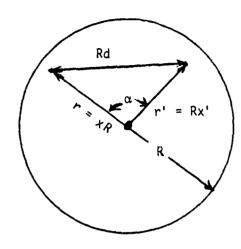


Figure 10 Current distribution of a cylindrical conductor with a current $\rm I_{0}$ impressed at one end.





VIII. <u>Dominant Current Distribution and Impedance of a Circular Disc Fed</u> at the Center



$$2\pi xi(x) = I(x)$$

$$\beta = \frac{2\pi}{\lambda} R$$

VIII.1

$$A(x') = \frac{\mu}{4\pi^2} \int_0^1 \int_0^{\pi} I(x) \frac{e^{-j\beta d}}{d} \cos\alpha dx d\alpha$$

$$\tilde{\phi}(x') = \frac{j}{4\pi^2 \epsilon R \omega} \int_0^1 \int_0^{\pi} \frac{d}{dx} I(x) \frac{e^{-j\beta d}}{d} dx d\alpha \qquad VIII.2$$

Boundary condition

$$-j\omega A(x') - \frac{1}{R} \frac{d}{dx'} \phi(x') = 0$$
 VIII.3

From the above three equations

$$\int_{0}^{1} \int_{0}^{\pi} \left[\frac{d}{dx}, \left(\frac{e^{-j\beta d}}{d} \right) \frac{d}{dx} I(x) + \beta^{2} \frac{e^{-j\beta d}}{d} \cos \alpha I(x) \right] dx d\alpha = 0 \qquad \text{VIII.4}$$

charge is zero at the center and takes the form of $(1-x^2)^{-1/2}$ at the edge.

Therefore, we assume

$$\frac{d}{dx} I(x) = a_k \frac{x}{\sqrt{1-x^2}} \qquad x_{k-1} < x < x_k$$

Integrating

$$I(x_k) = \sum_{\lambda=k+1}^{N} a_{\lambda} (\sqrt{1-x_{\lambda}^2} - \sqrt{1-x_{\lambda-1}^2})$$
 $k = 0, ..., N-1$

$$I(x) = I(x_k) + a_{k+1} (\sqrt{1-x_k^2} - \sqrt{1-x_2})$$
 $x_k < x \le x_{k+1}$

Equation VIII.4 can be reworked as:

$$\sum_{j=1}^{N} \left[a_{j}(g_{j}(x) + k_{j}(x)) + \sum_{\lambda=j}^{N} a_{\lambda} \ell_{\lambda j}(x) \right] = 0 \quad 0 \le x \le 1$$
VIII.5

where

$$g_{j}(x) = \int_{x_{j-1}}^{x_{j}} \int_{0}^{\pi} \frac{d}{dx} \left(\frac{e^{-j\beta d}}{d}\right) \left(\frac{x'}{\sqrt{1-x'^{2}}}\right) d\alpha dx'$$

$$k_{j}(x) = \int_{x_{j-1}}^{x_{j}} \int_{0}^{\pi} \beta^{2} \frac{e^{-j\beta d}}{d} \cos \alpha \left(\sqrt{1-x_{j-1}^{2}} - \sqrt{1-x_{j}^{2}}\right) d\alpha dx'$$

$$\ell_{\lambda j}(x) = \int_{x_{j-1}}^{x_j} \int_0^{\pi} \beta^2 \frac{e^{-j\beta d}}{d} \cos\alpha(\sqrt{1-x_{\lambda}^2} - \sqrt{1-x_{\lambda-1}^2}) d\alpha dx'$$

Rewriting VIII.5 and adding the terminal condition,

$$\sum_{j=1}^{N} a_{j} (g_{j}(x_{i}) + k_{j}(x_{i}) + \sum_{\lambda=1}^{j} \ell_{\lambda j}(x_{i})) = 0 x_{i} = i-1/2$$

$$i = 1, ..., N$$

$$\sum_{j=1}^{N} a_{j} (\sqrt{1-x_{j}^{2}} - \sqrt{1-x_{j-1}^{2}}) = I_{0}$$

Solution of above equations yields the dominant current distribution.

Impedance is computed as

$$Z = \frac{\phi(x')}{I_0} \Big|_{x'=0} = \frac{j}{4\pi\epsilon R\omega} \sum_{k=1}^{N} a_k \int_{x_{k-1}}^{x_k} \frac{e^{-j\beta x}}{x} dx$$

Program for Current and Impedance Calculation of a Center Fed Circular Disk

```
L. C. BLUADA FLA LLUDALA PREPRIOREAN LA DOLLUAR
LA CARRO ELEN CALCADA DE LA CALCADA DEL CALCADA DEL CALCADA DEL CALCADA DEL CALCADA DEL CALCADA DELA CALCADA DEL CALCADA DEL CALCADA DEL CALCADA DEL CALCADA DEL CAL
     longin i
1. Thirthogogy was in American
        . The second of the contract of the second 
           Marie Ser Branches
        Low And Solation Bibliotect
     TO WILLIAM RELATION BY LEWILLS COMPTOLES.
     1 1 21 ASBAKITATUKA ELEM

20 SATETEKEKALA

10 BULAN ASEBERA

120 BULAN ASEBERA
  ALC TILLS OF REAT VANIABLES

ALC TILLS OF REAT VANIABLES

ALC TO THE CONTROL OF T
           TO DELEGATION OF THE CONTROL OF THE 
             A Company of the Comp
                                 ***
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        HIS PAGE IS BEST QUALITY PRANTALLER ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                OM COPY PROBLEMED TO BOR
```

```
or of the first of the contract of the first of the first
                          The second secon
                       1 0 VAIA WEIGHT TOWNPHARI ALVEWILLENDING OWN
                                                                                                                                                                           3,630 93.42
            THE CANCES OF STANDING CANADADA AND THE
         الأصاف الشائل والرائز محار منامل المحارج السائر مناشكون الرائيسة
      المراجع المرا
         2012 Server 1223
201
         SMELCKARSAL STRUCTURA SHOVESHOVESHOVE SEYAVENOS
LAISTEONEA
LAISTEONEA
LAISTEONEALTONE
LOISTEONEALTEN
TOO ALTONE
LOISTEONEALTONE
LOISTEONEALTONE
           Start Colorada Dictional Alleria (Alexa) (Colorada Alexa)
           TOTAL OF A CALLERY CAMERAGE WELL RECO
         continue con concentration and continue con
```

```
. 1908 - J. J. Sandarder, 2000 Maries de la continue de la companie de la compani
    .I.v.B., 24.1
    ning ( alang ber ki ki gerepang bang kalang kanganakan kengang kalang bering bering bering bering bering bering
The second second is a second 
    BITTO AND CENTRAL CONTROL OF A MARCHAN AND CONTROL OF A STREET AND CONTROL OF 
 TO THE STORY OF THE STATE OF TH
    TITE CALL INTEGRACE OVER 1 15/18/18/18/18/A1/AL/BERARAME.
      .180 SUMBELUMBERESH
        しまずり 「はくまっとも(近80年ではより)(バニ・81世界)では、8十世界(ロッカーのは、これは、日本は一人に正正真)日本アによりアポポネティネ諸田
     MarciackTrive-collester.c.phaker-packtrive-cal-ater.c.o.xxc//xacmm
        LANGE TO MAKE THE
        122 / F1727
1225 22 22 24 Jelyn
        0017/03/9900/10000000101/09/03/6000PHPBRTC1.UHKKHBTEF.K#42/
        CONTRACTOR OF THE CONTRACTOR O
      THE RELEASE THE INCIDENTION OF THE PROPERTY OF
         UBI. IN HARTER (1991-26CNUQ(N(I)3)))/Z.UB90/(5.0200)1.0200)
1828 RETHIBA(AZ(I)+BCOMUG(NB(I)))/Z.UB00
         11 9 - - 1-19-19/90/M29-8EALPA
         Live on its bed-19 GCIM1 (#-1846886
        11.0 to Entroded withing minimum 20.0 percent out 1980 fine. AREALPA
        . 300 NE IL RREARID
        CONTRACTOR SERVICE
         1.000 300 0000 480 480 48
                                                            يمكر شاروا والمريوض أأوا المرازات الأرادات
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               THIS PAGE IS BEST QUALITY PRACTICABLE
                                                            and the second s
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SHOW COPY POSSILISIED TO BEE
                                                                                                                 The transfer of the second section
```

S. Carrie

with the depot of the party of the control of the c

```
Salar Salar Repert Commande Marina Calara Commande Salara Commanda Commanda Commande Marina Marina Commande Ca
                   200
                    Section of the section in
    Salar Sa
 The same of the sa
 ing the second s
  100 - 281 120 - 171 122.
101 - 141 11 1 1 1 1 28
        THE THE PROPERTY NEWSCOOLS (AMERICAN)
 And the second of the second o
  and the same and the same and
      ... BARKE SARRAL MAINDOODS ON BOOMER (I Am. D. DECUVI. 0100/744/ BBANY (I.
           CEIL BULLHARDENTSKOMARKING
  LIBE THE TWO TRANSFER BELLS
  The second secon
  1001 -- 110 15:100
    11.00 30170 02921222
    123. 2007. + .0. 2003/12/02003
  10110 CLNCHOLARRA: DSQRY(1,0-Xxx2)-DSQRT(1,0-(X-STEF)xx2))x(RB(R-I+1)*(1,0)
  ini) majouradaes(curr)
inot iso walfE (4,3000) Xymadour
    1750 WALLE (671<mark>00</mark>)
      1030 WRITE (6/2300)
[TTO 18(0.0200/0.0200)
    1700 X2 00.000W
     TTF: UC 120 Imiya
1800 Ingl IntegrozykozaTepykalkykekaKebelyo.jyC.oyzeTayRhoy
     ISTO INCHAZOULARRES AND ASSOCIOSOSO PARRIAMIATO, CLOSO (1. OLOS)
    1910 170 1842288782
1830 8-3837,0000,0000,1.0000,74.0/3.1415/8814
     New Andrewsky Z
    18.8 1 0 CHARTOT ()
11. 5000 CAMAROT DISTRES
                                                                                                                                                                                                                                                                                                                                                       MADN OF SMARGE TIMES VELOC OF LIGHT
     1877 INCO TURNST CARRONGE
                                                                                                                                                                                                                                                                                                                                                                                                 AMBRIANDA OF CURRANT 2
     LEAL LEGI FORMAN ( DESERBENHO .
      1179 LEVE FLERWYNT LLWELDWORD I
    1902 - 1903 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 1286 - 12
```

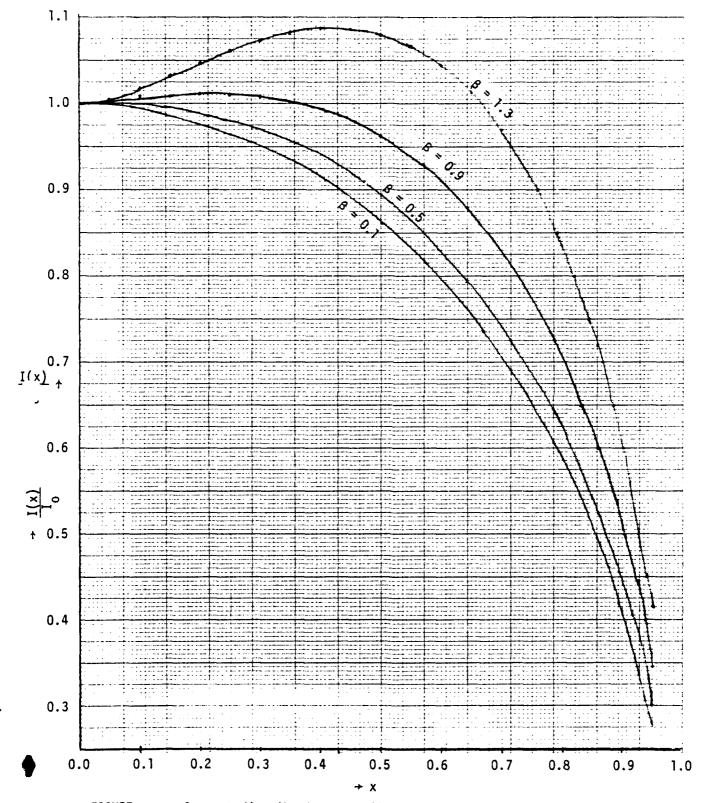
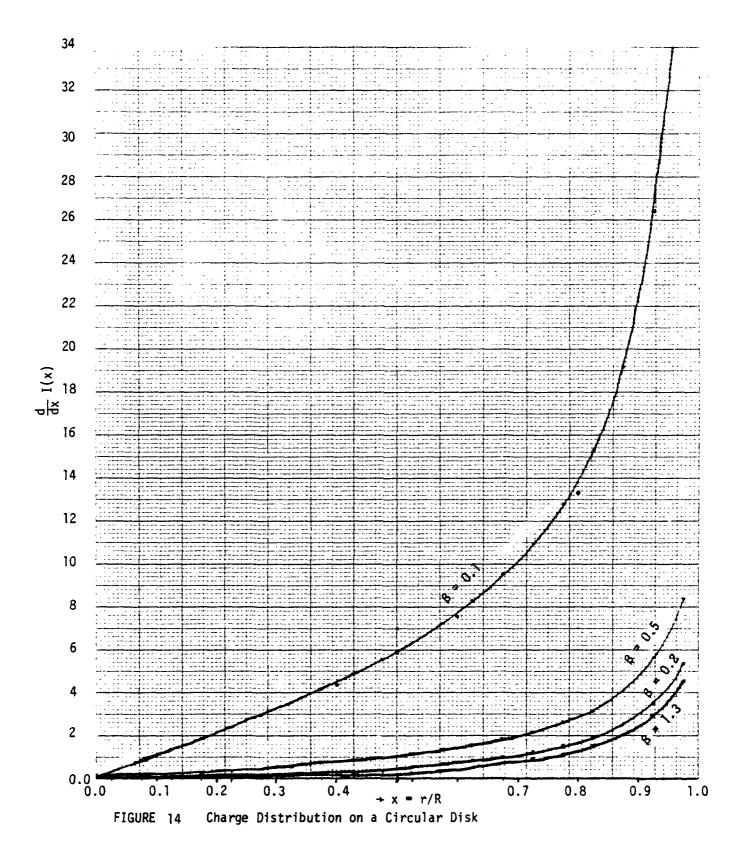


FIGURE 13 Current distribution on a Circular Disk fed at the center



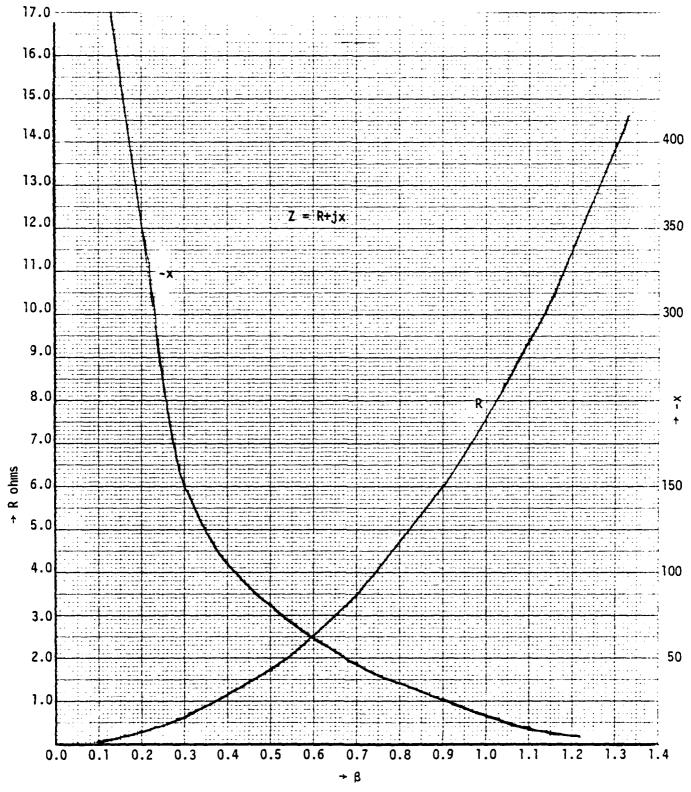
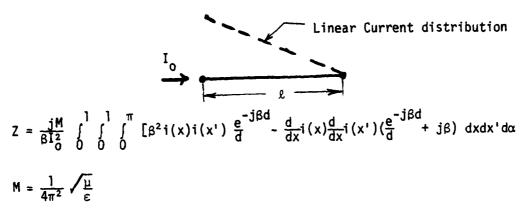


FIGURE 15 Impedance of a Center Fed Circular Disk

IX. Impedance Calculation of a Thin Wire with Linear Current Distribution



Assumption of linear current distribution and computation of the kernel at $\alpha = \pi/3$

$$Z = \frac{jM}{\beta\pi} \int_{0}^{1} \int_{0}^{1} \left[\beta^{2}(1-x)(1-x')\frac{e^{-j\beta d}}{d} - (\frac{e^{-j\beta d}}{d} + j\beta)\right] dxdx'$$

$$d = \sqrt{(x-x^{1})^{2} + \rho^{2}}$$

 ρ = Radius of the wire

Program for Impedance of a Wire with Linear Current Distribution

```
and the second of the second o
                            e de la companya de l
```

```
n de la companya de
La companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya de la companya del companya de la companya del companya de la companya de la companya
 OBBO DELLO MEDITO O MEDITO O MEDITO DE COMENCIONO DE COMENCIONA DE COMENCIONA DE COMENCIONA DE COMENCIONA DE C
                                                                                                                                         and the second of the second o
 line inak tetat.
Tak
 journal (1980) se anno 1980 ann an Aireann a
  ting the course
```

THIS PAGE IS BEST QUALITY PRACTICATION

```
*****
                                                                                                                       and the second of the second o
                    and the second of the second o
                                                                                                                       and the second of the second o
                             en de la companya de
La companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya de la companya del companya de la companya del la companya
```

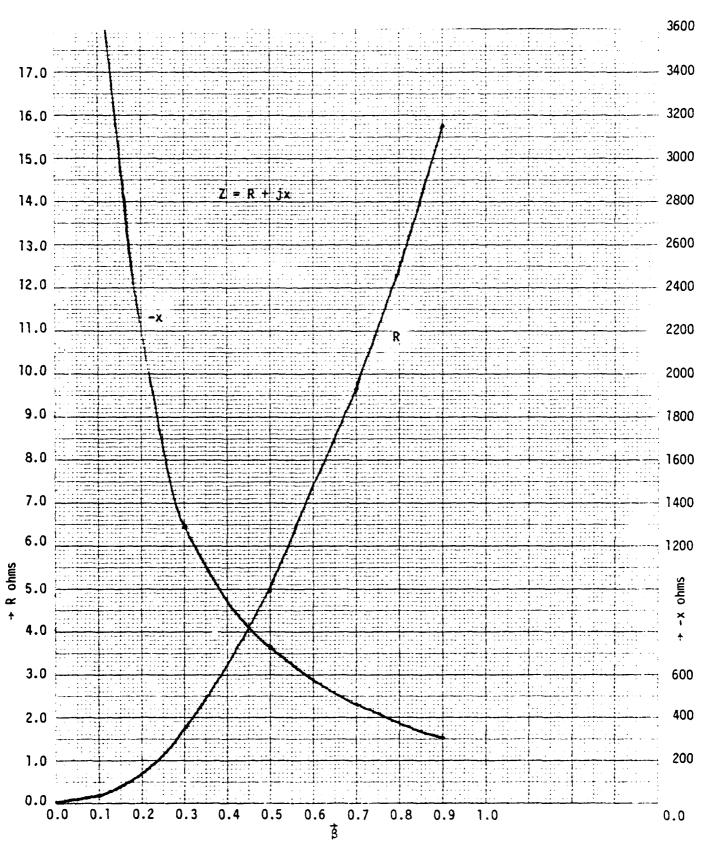
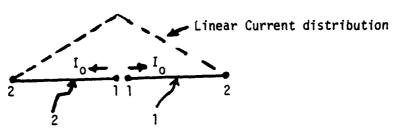


FIGURE 16 Dipole Impedance (Linear Current Distribution)

X. Impedance Calculation of a Dipole with Linear Current Distribution Via Diakoptic Theory



$$Z_{1,1}^{1,1} = \frac{j}{4\pi\beta} \sqrt{\frac{\mu}{\epsilon}} \int_{0}^{1} \int_{0}^{1} [\beta^{2}(1-x)(1-x')] \frac{e^{-j\beta d}}{d} - (\frac{e^{-j\beta d}}{d} + j\beta)] dxdx' = Z_{0}$$

$$Z_{1,1}^{2,1} = \frac{j}{4\pi\beta} \sqrt{\frac{\mu}{\epsilon}} \int_{0}^{1} \int_{0}^{1} \left[\beta^{2}(1-x)(1-x') \frac{e^{-j\beta d_{1}}}{d_{1}} - (\frac{e^{-j\beta d_{1}}}{d_{1}} + j\beta)\right] dxdx' = Z_{1}$$

$$d = \sqrt{(x-x^1)^2 + \rho^2}$$
, $d_1 = \sqrt{(x-x^1)^2 + \rho^2}$

$$z = 2[z_0 - z_1]$$

Program to Compute Impedance of Dipole Assuming Linear Current Distribution

```
(-1)^{n} = (-1)^{n} + (-1)^{n} + (-1)^{n} = (-1)^{n} + (-1)^{n} + (-1)^{n} + (-1)^{n} = (-1)^{n} + (-1)^{n} + (-1)^{n} + (-1)^{n} = (-1)^{n} + (-1)^{n} + (-1)^{n} = (-1)^{n} + (-1)^{n} + (-1)^{n} = (-1)^{n} = (-1)^{n} + (-1)^{n} = (-1)^{n} 
        . 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 
         en de la composition de la composition
La composition de la
La composition de la
          ing the control of th
```

and the second of the second o and the second of the second o and the second s ing the second of the second o

> INIS PAGE LE BEST QUALITY PRACTICALLE PROM STORY FORM IS NED 10 100

The second second second second second

ومراجعتها والمراجع والمناز وال ander. De la composition de en de la companya del companya del companya de la companya del la companya de la and the control of th

STATES AS BEST QUALITY PRACRICARILY

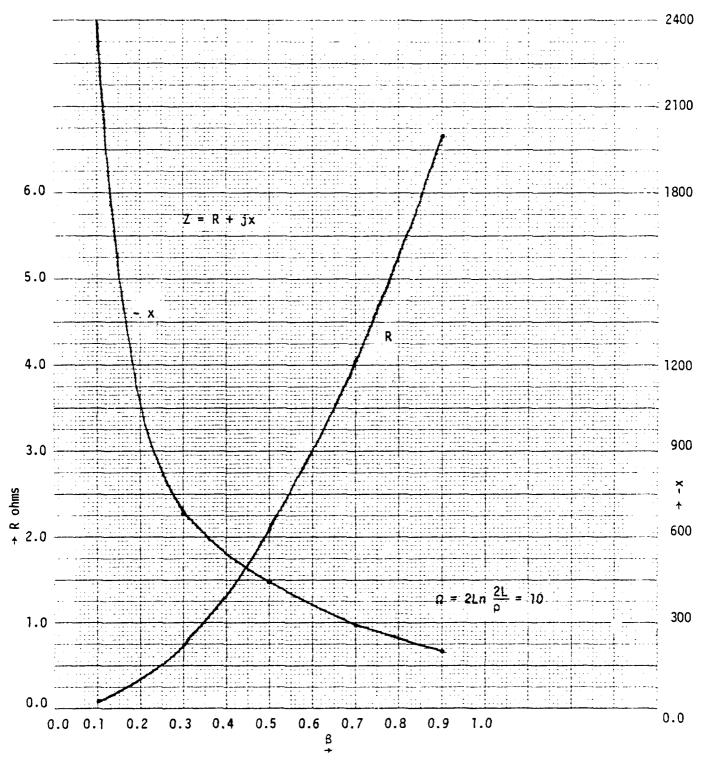


FIGURE 17 Impedance of Wire with Linear Current Distribution

XI. <u>Computation of Dominant Current Distribution for all Frequencies Via</u> Static Charge Distribution

Accurate computation of dominant current becomes one of the most important tasks in using Diakoptic Theory for complicated radiating structure analysis. For a general structure element it is a difficult task. Furthermore, if we can compute dominant current for all frequencies, the impedance spectrum becomes easy to compute. In many shapes, such as spheres, circular disks and cylindrical conductors, the static charge distribution is either known or easy to compute. In this section, we shall develop an algorithm to compute dominant current distribution from static charge distribution.

Let

$$\overline{i}(\overline{r}') = \sum_{n=0}^{n} (-jk)^n i_{\overline{n}}(r')$$
, $i_{\overline{n}}(\overline{r}') = \overline{i}'_{\overline{n}}$ XI.1

$$q(\bar{r}') = \sum_{n=0}^{u} (-jk)^{n} q_{n}(r')$$
 , $q_{n}(\bar{r}') = q_{n}$ XI.2

$$q'_n = \overline{\nabla} \cdot \overline{i}'_n$$
, $k = \omega \sqrt{\mu \epsilon}$

Thus

$$\overline{A} (\overline{r}) = \frac{\mu}{4\pi} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} (-jk)^{n+m} \overline{A}_{n\lambda}(\overline{r})$$

$$= \frac{\mu}{4\pi} \sum_{\lambda=0}^{\infty} \sum_{n=0}^{\lambda} (-jk)^{\lambda} \overline{A}_{n\lambda}$$

$$\overline{A}_{n\lambda} = \int_{S_{1}} \frac{\overline{i}_{n}(\overline{r}')D^{\lambda-n-1}}{(\lambda-n)!} dS' , \quad D = |\overline{r} - \overline{r}'|$$

$$XI.3$$

Similarly

$$\hat{\phi}(\vec{r}) = \frac{1}{4\pi\epsilon} \sum_{\lambda=0}^{\infty} \sum_{n=0}^{\lambda} (-jk)^{\lambda-1} \phi_{n\lambda}(\vec{r})$$
 XI.4

where

$$\phi_{n\lambda}(\overline{r}) = \int_{S} \frac{\nabla \cdot \overline{i}_n}{(\lambda - n)!} D^{\lambda - n - 1} dS'$$

S' represents the total structure area.

Taking gradient of XI.4

-jωμε
$$\nabla \hat{\phi} = \frac{\mu}{4\pi} \sum_{\lambda=0}^{\infty} \sum_{n=0}^{\lambda} (-jk)^{\lambda} \overline{\lambda}_{n\lambda}(\overline{r})$$

where

$$\bar{\ell}_{n\lambda}(\bar{r}) = \int_{S'} \frac{(\lambda - n - 1)}{(\lambda - n)!} \, \bar{\nabla} \cdot \bar{i}'_n \, D^{\lambda - n - 2} \, \frac{\partial d}{\partial r} \, \left(\, \frac{|\bar{r}|}{|r|} \, \right) \, dS'$$

Boundary Condition $E_{tan} = 0$, implies

$$(-k^2\overline{A}(r) + j\omega\mu\epsilon\nabla\hat{\phi})xd\overline{S} = 0$$
, $d\overline{S} = \overline{n}dS$ XI.5

Substituting XI.3, XI.4 into XI.5 and equating powers of (-jk),

$$\ell_{00} = \int_{S} (\nabla \cdot i_0) \frac{1}{D^2} \frac{\partial d}{\partial r} \frac{r \times n}{|r|} dS' = 0$$
 XI.6

$$\ell_{11} = \int_{S_{1}} (\overline{\nabla} \cdot \overline{i}_{1}^{i}) \frac{1}{D^{2}} \frac{\partial d}{\partial r} \frac{\overline{r} \times \overline{n}}{|\overline{r}|} dS^{i} = 0$$
 XI.7

$$\int (\overline{\nabla} \cdot \overline{i}_{\lambda+1}') \frac{1}{\overline{D}^2} \frac{\partial d}{\partial r} \frac{\overline{r} \times \overline{n}}{|\overline{r}|} dS' = \sum_{n=0}^{\lambda-1} (-\ell_{n,\lambda+1} + \overline{A}_{n,\lambda-1} \times \overline{n}) \qquad \lambda = 1,2,\dots \quad XI.8$$

$$n \leq \lambda$$

If the impressed current is assumed real at all frequencies, we obtain $i_1 \equiv 0$, $i_k(0) = 0$, k = 2, ..., n. Equations XI.6 and XI.8 compute the static current i_0 and rest of the currents i_2 , i_3 , ..., i_n .

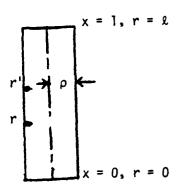
A. Cylindrical Conductor

Dominant current equations are simplified as:

$$\int_{0}^{\pi} \int_{0}^{1} (\overline{\nabla} \cdot \overline{1}_{Q}(x')) \frac{(x-x')}{D^{3}} dx' d\alpha = 0$$

$$2\pi \rho \overline{1}_{Q}(0) = I_{Q}, \quad D = \sqrt{(x-x')^{2} + (2\rho \sin \alpha/2)^{2}}$$

$$i_{T}(x) = 0$$



$$\int_{0}^{\pi} \int_{0}^{1} \left(\overline{\nabla} \cdot \overline{i}_{\lambda+1}^{\prime} \right) \frac{(x-x')}{D^{3}} dx' d\alpha = \sum_{n=0}^{\lambda-1} \int_{0}^{\pi} \int_{0}^{1} \left[\frac{(\overline{\nabla} \cdot \overline{i}_{n}^{\prime}(\lambda-n)(x-x') - i_{n}^{\prime}}{(\lambda-n+1)!} \right] D^{\lambda-n-2} dx' d\alpha$$

Tables 1 and 2 represent computed values of the current $I_n(x)$ and charge $q_n(x)$. Figures 19 and 20 show current $I_n(x)$ and charge $q_n(x)$ for different values of β .

Table 1, $\frac{I_n(x)}{I_0(0)}$ of a cylindrical conductor $\Omega = 2\ln \frac{2\ell}{\rho} = 10$

×	I _o (x)	I ₂ (x) I ₀ (0)	$\frac{I_0(0)}{I_3(x)}$	$\frac{I_4(x)}{I_0(0)}$
0.0	1.000	0.0	0.0	0.0
0.1	0.865	-0.0644	-0.0070	0.0095
0.2	0.768	-0.1000	-0.0110	0.0157
0.3	0.677	-0.1231	-0.0138	0.0206
0.4	0.588	-0.1357	-0.0155	0.0243
0.5	0.500	-0.1386	-0.0163	0.0264
0.6	0.412	-0.1323	-0.0160	0.0266
0.7	0.323	-0.1169	-0.0146	0.0247
0.8	0.232	-0.0923	-0.0120	0.0203
0.9	0.135	-0.0570	-0.0079	0.0141
1.0	0.0	0.0	0.0	0.0

Table 2. : $\frac{1}{l_0(0)} \cdot \frac{dI_n(x)}{dx}$ of a cylindrical conductor $\Omega = 2\ln \frac{2\ell}{\rho} = 10$

x	$\frac{1}{I_0(0)} \cdot \frac{dI_0(x)}{dx}$	$\frac{1}{I_0(0)} \cdot \frac{dI_2(x)}{dx}$	$\frac{1}{I_0(0)} \cdot \frac{dI_3(x)}{dx}$	$\frac{1}{I_0(0)} \cdot \frac{dI_4(x)}{dx}$
0.1	-1.010	-0.427	-0.0466	0.0683
0.2	-0.929	-0.286	-0.0331	0.0557
0.3	-0.896	-0.176	-0.0225	0.0435
0.4	-0.881	-0.076	-0.0125	0.0292
0.5	-0.877	0.018	-0.0024	0.0124
0.6	-0.881	0.108	-0.0081	-0.0073
0.7	-0.896	0.199	-0.0195	-0.0304
0.8	-0.929	0.293	-0.0325	-0.0579
0.9	-1.010	0.414	-0.0500	-0.0957

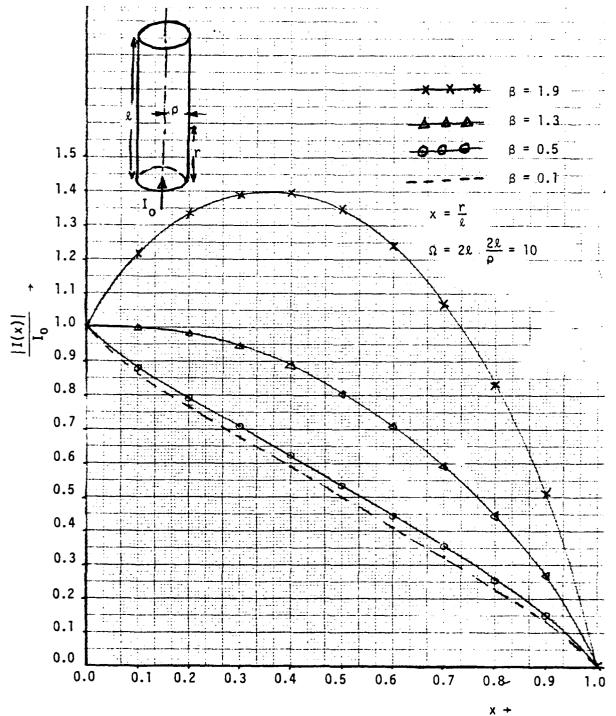


FIGURE 18 Current Distribution on Cylindrical Conductor

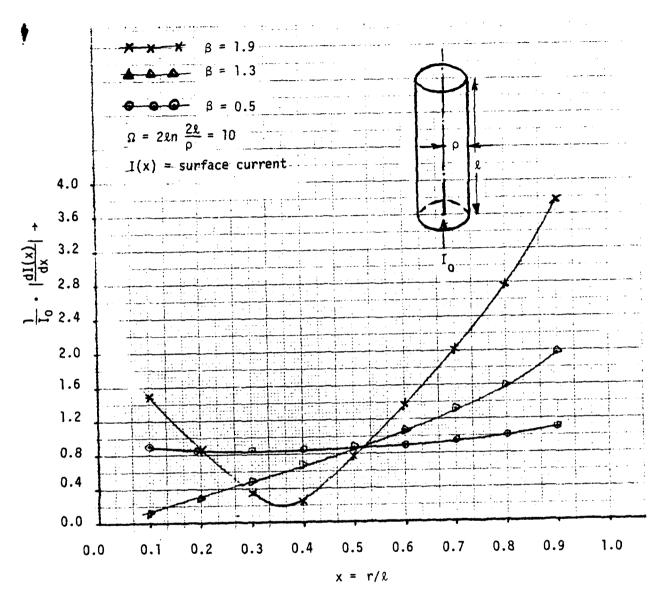


FIGURE 19 Charge Distribution on a Cylindrical Conductor

B. Circular Disc

$$2\pi x i(x) = I(x)$$

 $D^2 = (x^2 + x'^2 - 2xx'\cos\alpha)^{1/2}$
 $x = r/R, x' = r'/R$

Static charge equation is

$$\int_{0}^{2\pi} \int_{0}^{1} \frac{d}{dx} (x'i'_0) \frac{d}{dx} (\frac{1}{D}) dx'd\alpha = 0$$

$$i_1(x) \equiv 0$$

Higher order current densities are obtained by

$$0 \int_{0}^{\pi} \int_{0}^{1} \frac{d}{dx} (x'i'_{\lambda+1}) \left(\frac{x-x'\cos\alpha}{D^{3}}\right) dx'd\alpha = \sum_{n=0}^{\lambda=1} \int_{0}^{\pi} \int_{0}^{1} \left[\left(\frac{\lambda-n}{\lambda-n+1!}\right) \frac{d}{dx'} (x'i'_{n})(x-x'\cos\alpha)\right] dx'd\alpha = \sum_{n=0}^{\infty} \int_{0}^{1} \left[\left(\frac{\lambda-n}{\lambda-n+1!}\right) \frac{d}{dx'} (x'i'_{n})(x-x'\cos\alpha)\right] dx'd\alpha$$

$$-\frac{i'_{n} x'}{\lambda-n+1!} \cos\alpha D^{\lambda-n-2} dx'd\alpha$$

$$\lim_{x\to 0} i_{\lambda}(x) = 0 \qquad \lambda = 1,2,...$$

Tables 3 and 4 show computed values for various currents and charges. Figures 21 and 22 show current distribution and charges for different values of 6 .

х	Exact ω→0 Static √1-x ²	$\frac{I_{o}(x)}{I_{o}(0)}$	I ₂ (x) I ₀ (0)	I ₃ (x) I ₀ (0)	I ₄ (x) I ₀ (0)
0.0	1.000	1.000	0.0	0.0	0.0
0.1	0.995	0.995	-0.014	-0.001	0.00030
0.2	0.980	0.980	-0.039	-0.006	0.00105
0.3	0.954	0.954	-0.070	-0.012	0.00188
0.4	0.917	0.017	-0.101	-0.621	0.00241
0.5	0.866	0.866	-0.129	-0.031	0.00229
0.6	0.800	0.801	-0.150	-0.041	0.00125
0.7	0.714	0.715	-0.161	-0.049	-0.00074
0.8	0.600	0.600	-0.157	-0.054	-0.00333
0.9	0.436	0.433	-0.129	-0.049	-0.00526
1.0	0.0	0.0	0.0	0.0	0.0

Table $3: \frac{I_n(x)}{I_0(0)}$ of a circular plate fed at the center

x	Exact Static $2\pi\sqrt{1-x^2}$	div i(x) I ₀ (0)			
0.0	-0.159	-0.159	-0.647	-0.045	+0.011
0.1	-0.160	-0.160	-0.330	-0.045	00.009
0.2	-0.162	-0.162	-0.229	-0.043	0.007
0.3	-0.167	-0.166	-0.165	-0.041	0.004
0.4	-0.174	-0.173	-0.117	-0.037	0.001
0.5	-0.184	-0.182	-0.081	-0.033	-0.002
0.6	-0.199	-0.198	-0.043	-0.026	-0.004
0.7	-0.223	-0.222	-0.011	-0.017	-0.006
0.8	-0.265	-0.262	0.025	-0.004	-0.005
0.9	-0.365	-0.362	0.082	0.022	-0.00185

Table 4: $\frac{\text{div i(x)}}{I_0(0)}$ of a circular plate fed at the center

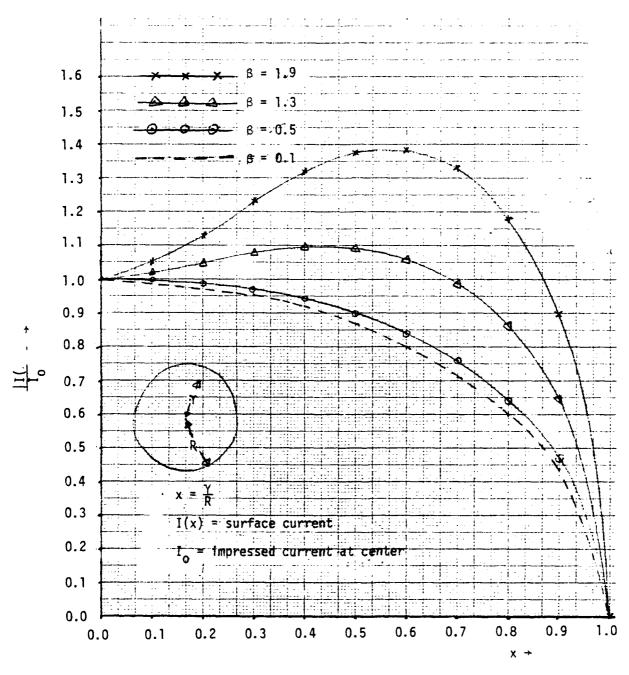
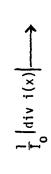


Figure 20 Current distribution on circular plate fed at the center



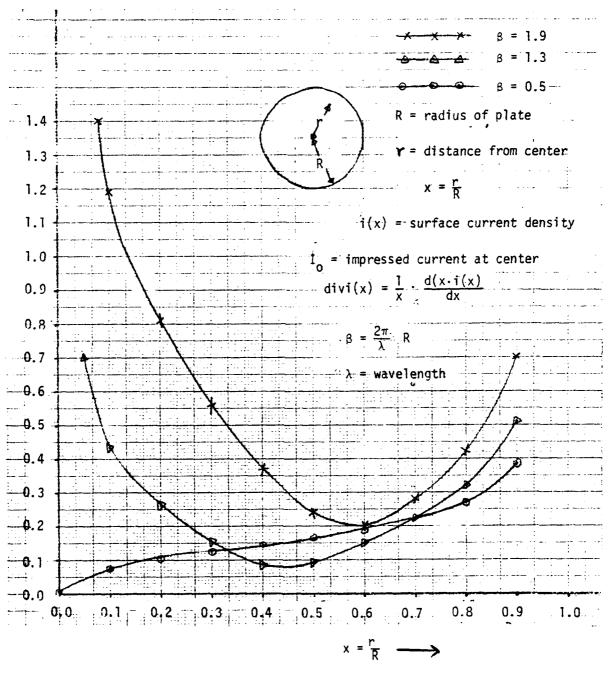


Figure 21 Charge distribution on a circular plate fed at the center

XII. Top Loaded Dipole Antenna

In this section we shall compute impedance characteristics of a top loaded dipole as shown in Figure XI-1

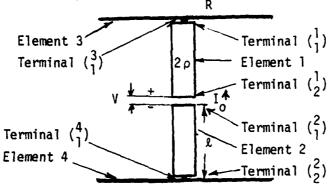


Fig. 22 Dipole with Circular Plates Capactive Loading

Section X is used to compute dominant current distribution on various radiating elements. Using the dominant current distributions, the various impedances are computed as

$$Z_{k,m}^{i,\ell} = \frac{j\omega}{I_{k}^{i}I_{m}^{\ell}} \int_{S^{i}} (\bar{A}_{m}^{\ell} \cdot \bar{I}_{k}^{i} + \hat{\phi}_{m}^{\ell}q_{k}^{i}) dS^{i}$$
 XII-1

where $\binom{i}{k}$ represents the impressed current terminal and $\binom{2}{m}$ represents the terminal where resulting potential is computed.

Matrix equation relating potentials to impressed currents is:

3 31		Z ₁₁ ³³	z ₁₂ ³¹	z ₁₁	Z ₁₁ ³²	z ₁₂	z34	I ₁ 3	
₱ 2		z ₂₁ ¹³	z ₁₁	z ₂₁	z ₂₁	z ₂₂	z ₁₄	12	
a 1	_	z ₁₁	Z ₁₂	Z ₁₁	z12	z ₁₂	z14	I	VII 0
[‡] 1	=	z ²³	z ²¹	z21	z ²²	z ²² 12	z24 11	12	XII-2
₱ 2		Z ²³	Z ²¹ Z22	z21 21	z ²² 21	Z ²² Z22	z24 21	1 ²	
* 1		z43	Z ⁴¹	Z ^{4?}	z42 11	z ⁴² 12	z44	14	

Let

$$Z_{11}^{11} = Z_{22}^{11} = Z_{11}^{22} = Z_{22}^{22} = Z_{0}$$

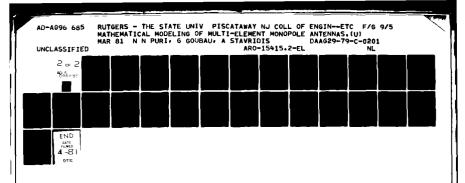
$$Z_{11}^{33} = Z_{11}^{44} = Z_{0}^{1}$$

$$Z_{21}^{24} = Z_{21}^{13} = Z_{12}^{42} = Z_{12}^{31} = Z_{1}^{1}$$

$$Z_{11}^{12} = Z_{11}^{21} = Z_{1}$$

$$Z_{11}^{24} = Z_{11}^{13} = Z_{11}^{42} = Z_{11}^{31} = Z_{3}^{1}$$

$$Z_{12}^{12} = Z_{21}^{21} = Z_{21}^{12} = Z_{21}^{21} = Z_{3}^{21} = Z_{3}^{21}$$



$$Z_{11}^{14} = Z_{11}^{32} = Z_{11}^{41} = Z_{11}^{23} = Z_{4}$$

$$Z_{12}^{11} = Z_{21}^{22} = Z_{21}^{11} = Z_{12}^{22} = Z_{2}$$

$$Z_{12}^{12} = Z_{21}^{21} = Z_{12}^{21} = Z_{5}$$

$$Z_{12}^{32} = Z_{21}^{23} = Z_{11}^{14} = Z_{11}^{41} = Z_{6}$$

$$Z_{11}^{34} = Z_{11}^{43} = Z_{7}$$

Thus

\$ 1		Z'o	Ζ¦	z ₃	Z ₄	^Z 6	z ₇	13
\$ ¹ ₂		2¦	Z _o	z ₂	^Z 3	z ₅	^Z 6	12
\$ 3	=	Z' ₃	Z ₂	z _o	z _l	z ₃	Z ₄	ΙΊ
φ ₁ ²	_	Z ₄	z ₃	Ζ ₁	Z _o	z ₂	z' ₃	12
φ ₂ ²		^Z 6	^Z 5	Z ₃	z ₂	Z _o	z' ₁	12
\$ ⁴ ₁		z ₇	^Z 6	^Z 4	Z' ₃	z ₁	z _o	I ⁴

Potential Condition: $\phi_1^3 = \phi_2^1$, $\phi_1^1 - \phi_1^2 = V$, $\phi_2^2 = \phi_1^4$

Continuity Condition: $I_1^3 = -I_2^1$, $I_1^1 = -I_1^2$, $I_2^2 = -I_1^4$

Thus

0		z _o '-z ₁ '-z ₁ +z _o	Z ₃ '-Z ₂ -Z ₄ +Z ₃	^Z 6 ^{-Z} 5 ^{-Z} 7 ^{+Z} 6	I
٧	=	z ₃ '-z ₄ -z ₂ +z ₃	Z _o -Z ₁ -Z ₁ +Z _o	Z ₃ -Z ₂ -Z ₄ +Z ₃ '	Io
0		Z ₆ -Z ₇ -Z ₅ +Z ₆	Z ₃ -Z ₄ -Z ₂ +Z ₃	Z ₅ -Z ₁ '-Z ₁ '+Z ₀ '	I

Solving for I_0 ,

$$I_{o} = \frac{(Z'_{o} - 2Z'_{1} + Z_{o} + 2Z_{6} - Z_{5} - Z_{7}) V}{2(Z_{o} - Z_{1})(Z'_{o} - 2Z'_{1} + Z_{o} + 2Z_{6} - Z_{5} - Z_{7}) - (Z'_{3} - Z_{2} - Z_{4} + Z_{3})(2Z'_{3} + 2Z_{3} - 2Z_{2} - 2Z_{4})}$$

Thus

$$Z_{in} = \frac{V_{o}}{I_{o}} = \frac{2(Z_{o} - Z_{1})(Z_{o}^{\prime} - 2Z_{1}^{\prime} + Z_{o} + 2Z_{6} - Z_{5} - Z_{7}) - (Z_{3}^{\prime} - Z_{2} - Z_{4} + Z_{3}^{\prime})(2Z_{3}^{\prime} + 2Z_{3} - 2Z_{2} - 2Z_{4})}{(Z_{o}^{\prime} - 2Z_{1}^{\prime} + Z_{o} + 2Z_{6} - Z_{5} - Z_{7})}$$

```
\mathbb{T}_{L}F :
      THIS PROGRAM COMPUTES THE SELF IMPEDANCES AS WELL AS THE
     MUTUAL IMPEDANCES OF THE ELEMENTS OF AN ANYEMAA CONSISTING OF
      A DIPOLE WITH END CIRCULAR PLATES.
      THE OUTPUT OF THIS PROGRAM ARE SELF AND MUTUAL INFEDERICES
        THE ELEMENTS, THE IMPEDANCE OF THE DIFFUL WITHOUT THE
     PLATESITHE IMPEDANCE OF THE DIPOLE WITH THE FLATES AND
     THE CURRENT AND CHARGE DISTRIBUTIONS ON THE CYLINDRICAL
      CONDUCTORS AND THE PLATES.
      THE DOMINANT CURRENT AND CHARGE DISTRIBUTIONS OF THE CIRCULAR
      PLATE AND THE CYLINDRICAL CONDUCTOR ARE COMPUTED. IN TWO SEPARATE
     PROGRAMS AND MUST BE SUPPLIED AL INPUT DATA TO THIS FROSE AND
     FUNCTION FW(X*J)
      CONMON /ABO/ CURVEC(5,11), CHAVEC(5,11), CURVED(5,11), CHAVED(5,11)
      COMMON ZDEFZ RHC,R,BETA
      COMMON /GHI/ I+M+K
      REALKS X
      CONFLEXA16 FW/CURVEC/CHAVEC/CURVED/CHAVED
      L = 10.0 \text{ AX} + 1
      IF(L.LT.11)GO TO 50
      L = 10
  50 CONTINUE
      IF(L.EQ.1)60 TO 10
      IF(L.EQ.10)80 TO 20
     FW = CHAVEC(J_*L)+(CHAVEC(J_*L+1)-CHAVEC(J_*L))/0.1D00*(X-(L-1)*0.1D0
     *0)
      RETURN
   19 FW == CHAVEC(J,2)+2.0D00*DSQRT(C.1D00)/0.1D00**2*(0.1D00-%)*CHAVEC(
     *391)
      RETURN
  20 FW= CHAVEC(J:10)+2.0D00*BSRRT(0.1D00)/0.1D00**2*(X-1.0D00+0.1D00)*
     *AVEC(J,11)
     RETURN
      END
      FUNCTION FD(X,J)
      COMMON /ASC/ CURVEC(5,11), CHAVEC(5,11), CURVED(5,11), CHAVED(5,11)
      COMMON /DEF/ RHO/R/BETA
      COMMON /GHI/ I/H/K
      REAL*8 X
      COMPLEX*13 FD, CURVEC, CHAVEC, CURVED, CHAVED
      L = 10.0 \text{ AX} + 1
      IF(L.LT,11) GO TO SO
     L = 10
  SO CONTINUE
     IF(L.E0.10)GO TO 20
     TD == CHAVED(JyL)+(CHAVED(JyL+1)-CHAVED(JyL))/O.1D00%.X-(L-1)%0.1D0
     400
     RETURN
   DO FD=CHAVED(J+10)+0.5D000*DSQRT(1.0D00-0.7D00**2)/((1.0D00-0.7D00
    */3.0000-0.400008/1.0000-0.9000*#22/%.\~0.9000\#0000\#0000\#0000\#0000\#0000\#0000
```

```
RITURN
   EBB
   SUBROUTINE ARCHAG(RES, MAGN, ARC:
   REAL*9 RRRED RRESVARCYMAGN
   COMPLEX#13 RES
   MAGN=CDABS(RE3)
   IF(MAGN.EQ.0.0000)00 TO 10
   RRRES=(RES+DCONUG(RES))/2.0D00/CDABS(RES)
   ARC=DARCOS(RERES)
   RRES=(RES-SCONUG(RES))/C.ODOO/(0.0DOO/1.0DOO)
   IF(PRES.CT.0.0000) 00 TO 36
   ARCHHARC
55 CONTINUE
   RETURN
10 MAGN=0.0D00
   ARC#0.0D00
   RETURN
   END
   SUBROUTINE CURCHA(X, BETA, CHARGE/CURREN)
   COMMON /ABC/ CURVEC(5,11), CHAVEC(5,11), CURVED(5,11), CHAVED(5,11)
   REAL®S X, BETA
   COMPLEXX16 RES,FW, CURVEC, CHAVEC, CURVED, CHAVED, CHARGE, CURREN
   RES=(0.0000,0.0000)
   DO 13 JJ=1,5
13 RES = RES + FW(X,JJ)*((0.0000,-1.0000)*BETA)**(JJ-1)
   CHARGE=RES
   L=10.0#X+1
   RES=(0.0D00 + 0.0D00)
   DO 15 JU=1,5
15 RES=RES+(CURVEC(JJ:L)+(CURVEC(JJ:L+1)-CURVEC(JJ:L))/0.1D00
  **(X-(L-1)*0.1D00))*((0.0D00,-1.0D00)*PETA)**(JJ-1)
CURRENHRES
   RETURN
   FND
   SUBROUTINE CUCHDI(X, BETA, CHARGE, CURREN)
   COMMON /ABC/ CURVEC(5:11), CHAVEC(5:11), CURVED(5:11), CMAVED(5:11)
   REAL*8 X/BETA
   COMPLEX*16 RES,FD,CURVEC,CHAVEC,CURVED,CHAVED,CHARGE,CURREN
   RES=(0.0D00,0.0D00)
   DO 13 JJ=1,5
13 RES = RES + FD(X,JJ)*((0.0B00,-1.0D00)*BETA)**(JJ-1)
   CHARGE=RES
   L=10.0*X+1
   RES=(0.0D00,0.0D00)
   DO 15 JJ=1,5
15 RES=RES+(CURVED(JJ,L)+(CURVED(JJ,L+1)-CURVED(JJ,L)+70,1000
  **(X-(L-1)*0.1D00))*((0.0D00),-1.0U00:*BETA)**(u...)
   CURREN=RES
   RETURN
   END
```

```
FUNCTION TOAUSS(A1X)S1X, HIT / BIT / ALL - BIZ, MAY HT / AZ, FA ALL - BIZ, 
     *>FUNCTH)
       DIMENSION NEGINT(7), KEY(8, -1(24), WEIGHT(24)
       REAL*8 AIX, BIX, AIY, BIY, AID, BID, D, GETCHT, AX, BX, CR, AY, E, FC,
     * AZ / BE / CZ / DX / DY / DZ
       COMPLEX*16 TOAUSS/FUNCTN/SUm
        DATA MEDINT / 2/0/4/5/6/10/15 /
        DATA KEY / 1,2,4,6,9,12,17,25
                                                              / 0.57735023990.0
                                                                                                                                 J0.77457aa69,
        DATA I
                                   0.339981044,0.851136312,0.0
                                                                                                                                 v0.538439310v
                                   0.708179846,0.238819106,0.481209387,0.932487514,
                                   0.148874039.0.433395094.0.079409538.0.3350433347.
     Ą
                                   0.973904529,0.0
                                                                                               -,0.201194094,0.384181347,
                                   0.570972173.0.724417731/0.848206533/0.85727339Cv
                                   0.987992518 /
                                                              7 1.0
        PATA
                        WEIGHT
                                                                                                 ,0.44444,1744,0.555555556,
                                   0.352145155,0.0473548/5/0.2844444444...478328371;
     0.236926095/0.167913935/0.360761573/0.171324473/
                                   0.295524225,0.269236719,0.219085350.0.149451349,
                                   0.033371044,0.101197101,0.178401495,0.185161000,
     4
                                   0.135289203,0.13957387370,107159221,0.070338047,
                                   0.030753242 /
        00 1
                           I = 1 / 7
        IF (MX.EQ.MPOINT(1)) GO TO 2
   1 CONTINUE
        TGAUSS=0.0
        RETURN
   2 \text{ JFIRSX} = \text{KEY}(1)
        JLASTX = KEY(I+1)-1
        TGAUSS = 0.0
        DG 11 I =1,7
        IF (MY.EQ.MPOINT(I)) 30 TO 12
11 CONTINUE
        TGAUSS#0+0
        RETURN
12 UFIRSY=KEY(I)
        JLAGT/=KZY(I/1)-1
        T0AUSS=0.0
        20 21 19197
        IF (hZ.EQ.MPOINT(I)) GO TO 22
21 CONTINUE
        TGAUSS=0.0
FETURN
IN USIRGIANEY(I)
        JLAGTI=KEY(I+1)-1
        TGAUSS=0.0
        00 7 IX = 198X
00 7 FY=198Y
       00 7 17×1,87
00 7 12-1/12
        今でもできっぱりまく数1パーの1×0万以外をおよぶ
```

```
37 # 1 : $ 015 -611X 27AX 2611X
     CNRICHAX)/2.0
      Directoria (Dv 2. c
      SYSTET (ALBERT HALY) / KG +ALY
      アドゥエンタミ版セントルエアラブパケチ直上子
      9Y4(57-870)/2.0
      CYTCITERY, J2.0
      50 10 EE 10*(B1Z-61Z)/KZ+612
      BI=IIX(B12-A12)/KZ+A12
      CI=(3Z-AZ)/2.0
      DI=(BI+AZ)/2.0
      SUM = 0.0
      DO C UKWIFIRSX/JEASTX
      DO 5 JYHUFIRSY: JLASTY
      DO 5 JE-JFIRSZ, JLASTZ
 5 SUM = SUM-ADECOMICACY ** SUMMERS OF THE SUMERS OF THE SUMERS OF THE SUMMERS OF THE SUMERS OF THE SUMER
   *FBX*Z(JY)*CY+DY*Z(JZ)*CZFDZ)*FUNCTNEZ(JX)*CX+G.,*Z(J/)*CY+D/*
    *-Z(JZ)*CZ+BZ)+FUNOTN(Z(JX)*CX+DX)-Z(J/)*CZ+b;,2(JZ)*CZ+&ZZ+
   *+FUNCTR(Z(JX)*CX+0X,-Z(JY)*CY+OY,-Z(JZ)*CZ:DZ)
   **FUNCTM(-Z(JX)*CX*DX*Z(JY)*CY*DY*Z(JZ)*CZ*DZ)
   * FFUNCTN(-Z(JX)*CXFDX,Z(J/)*C/FDY,-Z(JZ)*CZFDZ)
   **FUNCTM/ -I(UX)*CX+DX,-I(U/)*CY}DY,I(UZ)*CZ+DI)
   *+FUNCTN(-Z(UX)*CX+DX,-Z(UY)*CY+DY,-Z(UZ)*CZ+DZ))
 7 TOAUSS = TOAUSS + CX*CY*CZ*SUN
      RETURN
      SHO
      FUNCTION F1111(X,XPR,ALPHA)
      COMMON /ABC/ CURVEC(S)11), CHAVEC(S)11), CURVEG(S)11), CHAVED(S,11)
      COMMON 'TOEF,' RHO, R, BETA
      COMMON JOHIZ EZHYK
      COMPLEXW15 F1111, CURVEC, CHAVEC, CURVED, CHAVED, FW, FD
    *,CURRI,CURRI,CHARI,CHAR2
      REAL*8 XYXERVALPHAVRHOVRVBETAVE
     L = 10.0#X+1
      したとはよりよの水水を除木土
      CHAF1 - (0,0000,0,0000)
      CMAR2= 0.0000,0.0000)
      CURRI : (0.0000,0.0000)
      CLRF2=(0.0000,0.0000)
      DO 10 11=1,5
      CHARL=CHARL+FW(X,II)*K((O,ODOO,-1,ODOO)*BETA)**K(II-1)
      CHARGESCHARGAFFW(XFRyII)*((0,0D00)-1,0D00)*DETA)**(II-1)
      CURRI+CURRI+(CURVEC(II/L)+(CURVEC(II/L+1/-CURVEC(11/L) / CO.:DCC
    10 CURRO = CURRO * COURVEC (II) LPR) + (CURVEC (II) LPR) 1 . - LORVEC (II) LPR) >
    *:O、1DOOは(XFR-(LFR-1)※O、1DOO))※C(O、DDOO)・1.ODOO)を発出Te(/おきに1+1/
      I-DSORT: (X-XPR)**2\PHO**2)
      FillisCURRIACURE2k(DCGs.DETARD) - (C.dDOG,1.CDCC)ADSIN.Denn.D.
    化工作等层面流流流
    x = 0H in the Harria (ideal coerrant) - (0.0600) H. (0.000) about the harring x
    YAKO SECOVIZODO VABETA) ZEETA
```

```
TUTTION FILLPIKAAFKAALFKAA
      TIMMON - ABOT OUNVECKOVII/YOMKVEUKU, LITYKUNVEDKETI, YOMKVEUKU II-
Dommon /Tef/ Thoyr/Beta
      COMMON / CMI/ I/Hyk
      COMPLEMATS FILED/CURVED/CHAVEC/CURVED/CHAVED/FU/AD
    */CURRI/CURRI/CHARI/CHARI
      RZAL 53 TONPHOALPHAYRHOYROUTHYD
           5 10.08KH1
      Zumm la (o.opoo,o.opoo)
      CURED=(0.0000,0.0000)
       CHAR1 = (0.0500.0.0500)
      CHAR2=().0000,0.0000)
      七世代で10、日本以下代十1
      DO 10 II=1,5
      CHAR1=CHAR1+FW(X)II)*((0,0D00)-1,0D00)*SETA/**(11-1)
      CHARCHCHARCARU(XPR/III)*((O.ODOOy-1.ODOO)/*SETA)/**(II-1/
      CURRI=CURRI+(CURVEC(II)L)+(CURVEC(II)L+1)-CURVEC(II)L...C.1200
    **(X-(L-1)*0.1D00))*((0.0D00;-1.0D00)*BETA)**(11-1)
io cuerc=curre+(curvec(fi)LPR)+(curvec(II)LPR+1)-curvec(II)LPR+1)
    D =DCORT((XFXPR) **20+RHO**2)
      Till: -CURR1*CURR1*CURR2*(DCGC:DETA#D)-(0.0DGC:1:0DGC:1:CGGC)
    センドDETA/D
     CHIMARIYOMARIX((DOOS(BETAXD)H(C.ODOO)1.UBOC)XLGIR(GETAXD))/D
    *+<0.00000,1.0D00)*5ETA;/BETA
      RETURN
      EHD
      FUNCTION F1211(X,XFR,ALPHA)
      CCHMON JASCA CURVEC(5,11), CHAVEC(5,11), CURVED(5,11), CHAVED(5,11)
      TOMMOD NEEDS HOMMOD
                                  PHONRYBETA
      COMPLETATE F1211/CURVEC/CHAVEC/CURVED/CHAVED/FW:FD
    % CUERI/CURRO: CHARI/CHAR2
     PEALKS KIMPRIALPHAIRHUIR, SETAID
      L : 10,09% #1
     LPR-10.0*/PR:1
      CAMPix(C.CECO, O.DEOO)
      CHAF2-10.0D00,0.0D00)
      CUFR1=(0,0D00,0,0000)
      EURR2=(0.5D00,0.0D00)
      IO 10 II=1/5
      CMARIHORNARIAMW(KyII)*((),GDGO,HI,GDGO)*ARETA)**(II-4)
      CHARCHCHARZITH(XFR, II) * ((0.0D00)-1.0D00/*3ETA, 44:11-10
      CURRI=CURRIACOURVECCII/L:+CORVECCII/L::-CURVECCII/L::-CURVECCII/L:/
    *4.%-(L-1)*0.1D00))%((0.0D00)-1,0D00)*2ETA(**.11-1)
    CURRISCURRESCORNECCIIVLPW> & COURVECCIIVLPR = 1 / CURRECCIIVLPR = 
    * TO LIPOSATIONR-SEPR-ESAC.IDOC. (**), CO. ODCO: -1.00000. PARTHURANCIE-1.
      0 = DSOFT ( (1,ODOO-M-MPR) **2+RMC+*2)
      Firll - Cummiscumper (Does abtrake - Co. Object 1 Co. Object blank cuttake
```

```
2 + 19^4 \, {
m Min} \, (0.0001) \, (0.0001) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) \, (0.0000) 
       MAIN NOTES AL COMPONING DE PARA
          7771
             WINTER CHICL WAS Exalched
          COMMON 1.96. CURMED(SVII)/CHAVEC(5VII)/CURVED(SVII./CMAVED(CVII)/COMMON (TOTAL NACYRYBETA
          COMMON /CHI/ IVOVE
          CCHPLED /10 F1121/CURVED/CHMVEC/CURVED/CHMVED-FW/FU
       */CUER1:CURR2:CHAR1:CHAR2
          PEALSO X, KPR, ALPHA, KHO, R, DETA, D
          L + 10.000041
          1885 - 19. DAMPER 1
          DRAME (C. DBOOKO. OBOOK
          CHASI-(0.0B00,0.0L00)
           itasi-kowapuoyawapuoy
          CUPRD=(0.0b00/0.0b00)
          DO 10 TIMES/D
          TMART = CHARI + FW(A, II) # ( (O.ODCO, - L.ODCO) * PETA) * # (II-1)
          CHAPC+CHARCSFU(MPR, II) & ((0.0000) - 1.0000) * B2TH, **(11-1)
          CUPRESHOURRIF(CURVEC(II;L) F(CURVEC(II;L) FOORVEL(II;L)) / CURVEL(II;L))
       k*(Y-(L-1)*0.1D00)) %((0.0D00.-1.0D00.*8BETA/**:If-1)
10 CURR2*CURR2*(CURVEC(II*LPR)*(CURVEC(II*LFR*I)*CURVEC(II*LFR))
       #/C.iDOO*(XPR-(LFR-1)*O.iDOO))*((O.)DCOy-1.0DOO)*DE(h/,*#(i1-1)
          L=DSDRT((L.ODOO+X-XPR)**2+RHO**2)
          F1121-CURRI*CURRC*(DCGS(BETA*D)-(0.0D00,1.0D00) & SSIN(BETA*D)
       A) KRETA/D
       PHOMARI#CHAR2#(CDOOS(BETA#B)+:00.0000/1.0000)#BS1D(DETH#6 0)/D
      サキくらしこむこのデエ・ODOO! ADETA)/BETA
          RETURN
          CHD
             TURETION FIGGI(X,XPR,ALPHA)
         COMMON MARON CURVECKS: 11: FCHAVECKS: 1: Fred RVEDKS: 1: 1: Fred RVEDKS: 1: F
          COMMON JOETH RHOVEVERTA
          COMMON JOHNS DAMAK
         COMPLEXALS F1221/CURIES/CHAVEC/CURVED/CHAVED/FW.FD
       *, CURRI-CURRU OMARI, CHARU
         FEAL WOLLYZERSALEHAVKHOVKYDETAVD
                       10.04741
          LPA:10.04YPR+1
          CHAP1 < C.OBCO.O.O.OBCO.
          (COMO.00000,0:0000)
          CURRISCO. ODOC (0.0500)
            DURAD - G.GBGG,J.obGC,
          00 10 IP440
          CHARL CHARLARUARUARUARUA (O.ODOO) -1.ODOO) & DETROLARUARUA (I.E. 1)
          「CHARCHINHARD FEW(XPR・II)なくくは、OLOGO・・1、CBUG、AUCTA)と4くII II) I)
           CUPRI=CURRIA(CURVEC.II.L) / (CURVEC.II.L) / UNVEC.II.L) / UNVEC.II.L) / U. LLOU
       io currinospres four profita profita pulla profita de la cura profita de la composició de l
```

```
POPERTY (CO. CONC. HOME. MIXAMENOWAL
     Fittel - cumpuscumman voostachiku/
                                                                                   للأرواز والمنطائف فوتها فلأمواز المركان والأخلاط أوالا والأربار والمراجع
    REPORTATO
    Y-MHARIMOHARDWAY GOOG (BETAKA), (Colocologia, Julio - Fulli, Liliani, Society)
    FF10,1000-1,00001955TA//SETA
      医医型性原注
      END
      TUNCTION FZ131·X/RERVALPHA)
      COMMON /ARC/ CURVEC(5,11), CHAVEC(5,11), CURVED(5,11), CHAVES(5,11)
      COMMON /DEF/ PHO:A: BETA
     NAMA CHICA NEMICE
      COMPLEXITE FOICIVOURVEGICHAVECICHRUED GLAULD FW. (D
    thousely CUPRO/SHARL, CHARD
     REALSO NYMPRIALPHAYRHOYRYBETAYD
      FI - 3.14159285358979800
      L = 10.04X41
     LPRHIO, OKXPRF1
      CHARIELO. ODOGEO. ODGGE
      CHARITA 0.0000,0.00000
      CUER1 = (0.0D00 + 0.0D00)
      QUPR2=(0.0b00,0.0b00)
      DC 10 II:1,5
      CHARL=CHAR1+FD(X,II)*,(0.0000,-1.0000)*2ETA%R(;%,11-1)
      CHARD=CHARDAFD(NPR,II)x((0,0D00)-1,0D00)*bETA*R)**(11-1)
      CUPRI=CURRI+(CURVED(II)+)+(CURVED(II)+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CURVED(II,+L+1)-CUR
    15 CURRO-CURRO+(CURVED(II, LPR)+(CURVED(II, LPR+1, -CUR, ED(11, LFR))
          ?.1D60*{\PR-{LPR-1)*0.1D60}}#{{0.000}}~1.5000;~1.5000,*BLTA*K/555.11-1
      CHDERRY(XYX2+XPR*X2-2.0000xXxXXFRXDCOS(ALFHA)), AR
      FT131:CURR1%CURR2%(DCGS(BLTA%D)-(0.0DCG)1.CBGG)*DSIP bl.A41 -
    POPIETA (TORGADO AL DEGO/PIXXE
    * TO THE LOOP HERE KINDEDECONDETAND) - (O.ODOO) 1.ODOO > AUSIM (PETAND) // U
    PETUSN COMPONIBETAR/SERVICE COMP
      THRICTION FILLET WOLFRAMEPHAY
     CONMON TABE: CURVECKS/11)/CHAVEC(S/11)/JURVED(S/11)/CHAVEL(U/11)/COMMON ODER TRAD/C/RETA
      COMMON /GHI/ IYMYN
         DMPLENKIS F3141-CURVEC-CHAVEC, CURVED, CHAVED, FW, FD
    // DURRI - CUREZ - CHARI - CHARZ
      REAL SE HANDERSELPHAARHUARA DETAAD
      \Gamma^{\ast}(E)
             - 3.11150235353979000
               10.000,41
     LETTILO.ORXEREL
      79661 F(0) UD00.0.00000
      CHAPRE (d.opod.op.Cboc)
      CURRI (Co.coco, o. Oboc)
      JURR2-(3,3003/0.0000)
     TO 10 IT:195
```

```
CONSINCENT CANDING CANDIDA CONCLUDA CONTRACTOR ABENIANO ANGLISTA
       THART CHARTAIN HAR HISEL LODGE AS 1 COURT AND AND ANALYSIS 11-12
       CURRI-CURRING CAROCERTELA DA CONTROL CLIVE FILA-CONVED. LETAL A CALLA CAROCERTE
     13 OPROS OURS SAKOURVED HIVLPR. AKUUKVEAKIIVLAKAKA CUKVED KIIVENAA
     170.1000707FF-(LFR-1)70.10007.10007.10007.10007.100007.100007.1000.07.100007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007.10007
        THOROGOTY NAME OF THE CALIFORNIA AND COURTER AND COURT
       FB141 - CUPRI+CURRI+CURRICHS(BETA/AD)--(0.0000,1.00000/NDS1H(ZETA/AD)
     *>ABSTALD REWALL () DDOO THINGS
     **CHARLICHARCR(CDDD3(BE)AA), (c., jobol, 1, jbbol, audin, EETAAD), (c., jbbol, audin, bETAAD), (c., jbbol, audin, betaAab)
     R4(0,0D000,1.0D00) SETTHE EETH SAKKER
       RETURN
        Thin
       FUNCTION FILLIANDARD ALDER.
        TORMON MARCH CURMECTORILL CHARLOSCRILL FOURTED CORRECT FLOR CHARED CORRECT CONTROL OF THE FIRST REPORT OF THE
        порумера
       COMMOR ROWLD INNIK
        TOMPLEXILE F3111/CURVEC/CHAMES/CURVES/CHAMES/WW/FD
     *: DURRIYOURROYOHAR: / CHARQ
       REDLAS NEXPREALPHAYRHOURFEELDS LOS 15.78 (S1
       ただちにもつ、ひえべを含すた
       Classisto.opocyo.opocy
       CHMRCH.J.ODOO,0.0200)
        DURRITKO,6500,6.08667
       SURP2=(0.0000,0.0000)
       DO 10 II=1/5
       CHARI-CHARI-FB(A)II)*((O.ODOO)-I.ODOO)*&ETA*K/**(II-I)
10 CMARS=CHOROFFW(KPR,II)*((U.ObOU,-I.ObOU)*EETA,*KR(II-1)
         D,DECRT(《唐孝米)水水是州(1,ODOO)(大臣南、本本之)
        FT1111=-CHaritcharitcharitate(bc00-be(asb)-(0.0D00v1.0D00)sbs1a(beTasb).//
     APARO CODOCAL ODGOAMBETAN BUTA
       PETUEN
        FUNCTION F3112(A)XPR/HLPHA)
       COMMON NAMES CURVED(S) 11) JUNAVEC(S) 11) JUNAVEC(J:11) JUNAVED(J:11) JUNAVED(S) 11.
        COMMON PORF ' RHOYRYBETA
       COMMON FORIS INNOK
        COMPLEXITA F3112/CURVEC/CHAVEC/CURVED/CHAVEL/FW/FD
     % - CURF ty CURFC + CHAR1 + CHAR2
       REDUCES TO THE CALPHAURHOUR OF THE THOU
        1. 4 10.01441
       LERGIO. ON OPERLA
        79, 61 % L. 300000.00007
        CHARC S CLOCKOLOMOSA
       CORT:--3, 236,0.0000
        maniah bisabasa buda
        D 15 12=175
        CHARLISCHARLIFECK, 11) * (.5.6bcc, -1.3bco) * BETARR, * * (11-1)
     COMPACT CHARCARUA APALIENT COLCACO A HLODOUS KAETAN KA ELHAR
```

```
デニュ土色。一つHanki MuHARDMRAK(Debs、必要である)。一くら、ひむしむティックDout Nusill、配置であるに、ティ
    PRHED, COOR - L.ODORIASETAR/SETA
      RETURN
      CMO
      FUNCTION FOLDINX, XFR, ALPHA,
      COMMON FARCA CURVECKS: 11:/CHAVECKS: 11:/CURVEDKS: 11:/CHAVEDKS: 11:/CHA
      COMMON JOSETA CHOVAVBETA
      COMMEN FORIZ IVAVE
      COMPLEYE'S F3121, CURVEC, CHAVEC, CURVED, CHAVED, FW, FD
    */CURRI/CURRI/CHARI/CHARI
      REAL VS XVXPRVALPHAVRHOVRVBETAVD
      1. = 10.04841
      北京野田10、0本区野原本主
       CUMRI::0.0000,0.00000)
        (Code.O.code.code)
      CURRI=(0.0B00,0.0B00)
       CURR2=(0.0000,0.0000)
       TO 10 II=1/8
      CHARL =CMAR1+FB(X,II)x((0.0D00,-1.0D00)*BETAAR) **(II-1)
10 CHARC=CHARC+FW(XPR/II)*((0.UD00/-1.UD00)*BETA)**([I-1/
       D=DSORT((RXK)xx2+;2,ODOO-XFR)xx2)
       FF:C1=-CMAR1&CMAR2*X*(\DCDE(BETA&D)-(O.ODOO,1.ODOO)*DSIN(BETA&D))/
     *D+(0,05000,1,0000)*BETA)/DETA
      PETURN
       FUNCTION F3122(X,XPR,ALPHA)
       COMMON /ABO// CURVEC(5,11), CHAVEC(5,11), CURVED(5,11), CHAVED(5,11)
       COMMON /DEF/ RHOVRYBETA
       COMMON JOHIN IAMAK
       COMPLEXES F3122/CURVEC/CHAVEC/CURVED/CHAVED/FW/FD
     tycursi-cusso, chari, chare
      STILE SO KARPRALPHAARHOARABETAAD
       L = 10.01X+1
      1.000 = 1.0 + 0 & (200 + 1
       CHAP1/ 0.0000,0.00000
       SHARE (9.0000,0.0000)
        (0000.0000.0000.0000)
       CURRI (0.0000,0.0000)
       00 in II=1,5
       UHAR1 =CHAR1+FD(XyII)x((0.0D00;=1.0D00)*BETA*R)**(II=1)
10 CHARC=CHARC+FU(MPR-II)*((0.0D00-1.0D00)*BETA)**(II-1)
       D=DSQRT((RXX) F*C+(1,0000+XPR) **C)
       F3122=--CHAR1*CHAR2*X*((DCUS(BETA*D)-(0.0D30):.3203(:ADS1N(BETA*D))/
     PD+(0,0000;1,0000;%PETA)/DETA
       PETURN
       FMC
       COMMON MARCH CURVECKS, 11, ACHAVECKS, 11), CURVEDKS, 11), CHAVEDKS, 11)
       COMMON FORFY RHOURSETA
        COMPON COMIN INCOM
        TYTERHAL (MW)FD)F1:11:F1:22,F1:21:,F1:121,F1:22,F1:22:,F1:22:,F3:31:41,F3:11:
     */F31:2/F3121/F3122
```

```
COMPLETIZES TORUSSYFWYRESYFDYCORVESYCHAVECYCHYVEDYCHAVED/ELST
             L.REST. REST. REST
             * - 20011 - REC12 - REC10 - RES1 * - RES15 - REC15 - AES17 - REC17 - RES17 - R
             Y CIL.CIN.ZDNyF111119F1122yF13211yF1121yF11221yF31317F3131/F3N41/F3L11
             kyF5112*F5121;F5122
                PEALIS SHOUR , BETAURIUMAUNU ARCURASSURRRESUA
                PI-5.14159235358979D00
               WRITE(6,5302)
5600 FORMATO' RHOVEVBETA
                BELICOSORO RHOPROBETA, (CURVED CIJI CHAVED CIJI CURVECCIJI CHAVECIJI I=1,5J=1,11)
                SPITE (6:5601) RHC:R:VBETA.
Capt Formatic Rate = 4,812.7, 'R = 4,812.5, 'Beta = 3,810,4)
                   RSD = TUNUSCO.091.090.091.050.09P1915915929494919F1111)
                  RET-REE.().ODCO.1.0000)/4.0000/PI**2*377.0000
                  WRITE (By 5111) RES
 Ettl FOR AAT( / TO = Z1111 - //2F14,0)
                                      TGAUSS(0.0,1.0,0.0,1.0,0.0,PI,15,15,25,2,3,1,F1122)
                  753: F57() 0.0500/1.0500)/4.0100/P1**2*377.0500
                  SETTER SETTERS REST
 #110 FCF261 / 21 = I1122 = (92F14.6)
                    TEFI TEADESTO.0,1.0,0.0,1.0,0.0,FT,15,15,15,2,3,3,1,F1211)
                  FEBC - FEBCk(0,0000,1.0000)/4.0000/PI**2*377.0000
                  WRITE (3/5100) RES2
  5100 FORMATO | E2 = Z1211 = 1,2F14.67
                  ESSS = TSAUSS(0.0,1.0,0.0,1,0,0.0,PT,15,15,2,3,3,1,F1121)
                  RES3 - RES3*(0.0D00,1.0D00)/4.0D00/PI**2*377.0D00
                  WRITE(6,5101) RESS
  U101 FORMAT(^{\prime} Z3 = Z1121 = ^{\prime} ,2F14.6)
                  FES ) = TGAUSS(0.0,1.0,0.0,1.0,0.0,PI,15,15,2,5,2,5,1,F1221)
                  REST = RESt*(0.0D00,1.0D00)/4.0D00/PI**2*377.0D00
                  URITE:6.5102) REG4
  5102 FORMAT: ( 25 = 21221 = ',2F14.6)
                  RESS = TSAUSS(0.0,1.0,0.0,1.0,0.0,FI,15,15,15,15,2,2,1,F3131)
                  RESE = RES5*(0,0D00;1.0D00)*377.0D00
                  WRITE(6.5103) RESS
  5103 FORMATO: ZOPR = 23131 = (,2714.6)
                  EESS = T9AUS3(0.0.1.0.0.0.0.1.0.0.0.FI,15,15,15,15,15,1,1,F3141)
                  RESA = RESA*(0,0000,1.0000)%377.0000
                  WRITE(6,5104)RES6
  5104 FORMAT( | Z7 = Z3141 = (+2F14.6)
                  RES7 = TGAUSS(0.0/1.0/0.0/1.0/0.0/PI/15/15/2/1/1/1/F3111)
                  RES7 = RES7*(0.0D(0.1.0D00)/2.0D00/P1*377.0D00
                  WRITE(6,5105) REST
```

```
RESS = RESERTO DEGO, 1.0000 / 2.0000 / 1.0000 /
    WRITE (5.5106) RESS
510% FORMATI'
              1108 - 15112 - VIF14.6/
    RESP - TSAUSS(0.0,1.0,0.0,1.3,0.0,11,15,13,2,1)1,1,1,1,23121)
     RES7 = DES7100.0000,1.0000),2.0000/FING/7.0000
    WRITE (6,5107) RESP
5107 FCRMAT(' Z5 = 20121 = ',2F14.6)
    RESIC = TGAUSS(0.0,1.0,0.0,1.0,0.0,PI,15,15,15,2,1,1,1,73122)
    RESIO = RESIO*(0.0D00)1.0D00)/2.0D00/PI%377.0D00
    WRITE(6/5108) RES10
5108 FORMAT(/ Z4 = Z3122 = /,2F14.6)
     IDW=0.0000*(RES-REG1/
    WRITE(SySito) ZDW
5:10 FORMAT( / IMPERANCE OF DOUBLE WIRE = (,2F14.6)
    CII = (REC24RES10-RES7-RES3)/(RES5-2.0D004REU84RES42.0D004RES7
    K-FES4-SES61
    TIM = (2.0000% (RES-RES1)*(RES5-2.0D00%RES6*RES+2.0D00%RES9
    *-RESI-RESA:
    * - (AEST-RESC-RES10+RES3)*(2.0D00*REST+2.0D00*RESS-2.0D00*RESS
    4-2.0D00%FES10))
    %/**RESS-C.OPOO*RESS*RES*RES*2.ODOO*RES9-RES4-RESa)
    WRITE (6/5120) ZIN
5120 FORMAT(' IMPEDANCE OF DOUBLE | WIRE WITH TOP CAPACITORS = ',
    *CF14.3>
    DO 11 J=1,11
    X=(J-1)*0.1D00
     CALL CURCHA(X, BETA, RES1, RES2)
     CALL CURCHA(1.0D00-X, BETA, RES3, RES4)
     PESS=RES1-RES3*CI1
     RESS-RESSARES4*CI1
     CALL ARCMAG(RESS, MAGN, ARC)
     CALL ARCMAG(RESS,MAGN1,ARCI)
  11 WRITE (5/2005) X/RESS/MAGN/ARC/RESS/MAGN1/ARC1
AF5,5,1 I=1,2F9.6,1
                        MAGI=19F7.491 ARCI=19F9.60
     DO 13 J=1+11
     N=(J-1)*0.1D00+1/J*RHO
     CALL CUCHDI(X, BETA*R, RESI, RES2)
     RES1=RES1*CI1*2.0D00*PI*X
     RESE-RESEACI1
     CALL ARCMAG(RESI, MAGN, ARC)
     CALL ARCMAG(RES2/MAGN1/ARC1)
  13 WRITE (6,2006) X, RESI, MAGN, ARC, RES2, MAGN1, ARC1
2006 FERMAT(' Xm'yF4.2,' DI/DXm',2F9.6,' MAGDI/DXm',F7.4, -
                                                            ARCDI/DR=
    */7F9,6
    *; / I=/,2F9.6, / MAGI=/,F7.4, / ARCI=/,F9.6)
 125 CONTINUE
     STOP
     FND
```

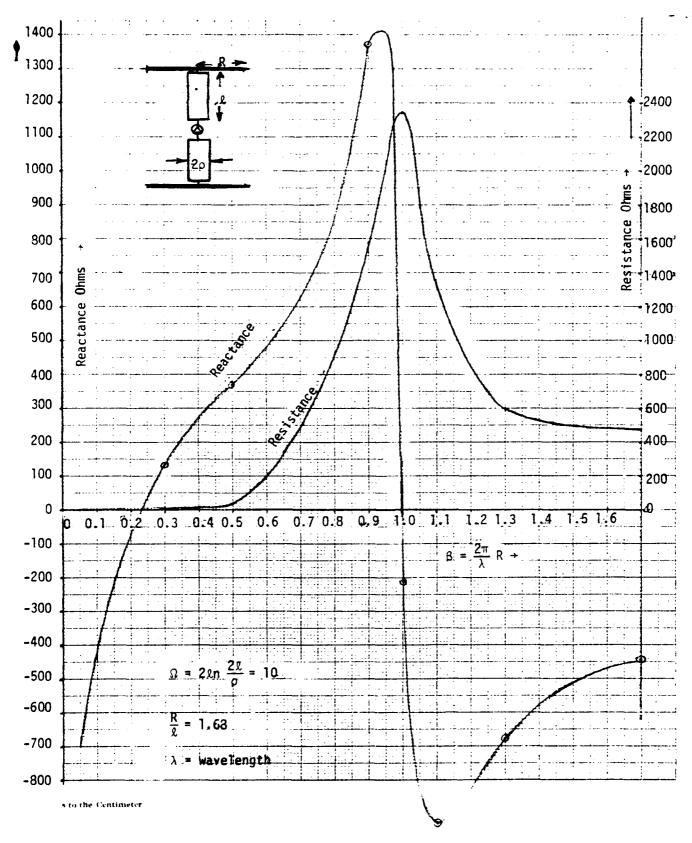


Figure $_{23}$: Impedance of a dipole with top circular plates

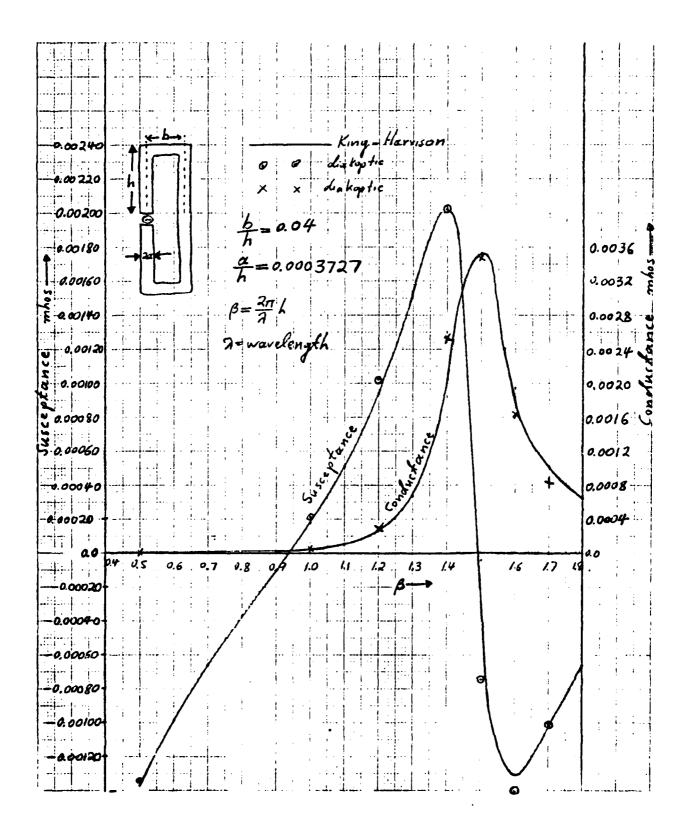


FIGURE 24 Comparison of Folded Dipole Admittance Calculated with Diakoptic Theory vs. King, Harrison.

References

- 1. G. Goubau and F. Schwering, "Proceedings of the ECOM-ARO Workshop on Electrically Small Antennas," Ft. Monmouth, NJ, pp 63-67, Oct. 1976.
- K. R. Demarest and R. J. Garbacz, "Anomalous Behavior of Near Fields Calculated by Method of Moments," IEEE Trans. Antennas and Prop., AP-27, pp 609-615, Sept. 1979.
- 3. G. Kron, Tensors for Circuits, Dover Publications, New York, NY.
- 4. R. W. P. King, "Cylindrical Antennas and Arrays," Chapter 9 of Antenna Theory, Edited by R. E. Collins and F. J. Zucker, Univ. Electronic Series, McGraw Hill.

Conclusion

The major advantage of the diakoptic theory for multielement antennas, is that the problem of determining the current distribution on the antenna need not be solved for the structure as a whole, but only for the individual structure elements. Excitation of each structure element is ascribed to the currents at its junction with adjacent elements, and to the fields of the surface currents on all the other elements. The current distributions produced by the junction currents have been termed dominant current distributions, because they constitute the major portion of the currents on the composite antenna structure. The remainder of the currents are made up by scatter currents which are produced by field coupling. Field coupling, as a first approximation, is determined by the dominant current distributions, while coupling by the scatter currents in general is negligible. Introduction of impedances for the characterization of structure elements and their interaction permits utilization of network theory concepts for the determination of the junction currents and the input impedance of the antenna. Formulation of all impedances by stationary expressions renders the results insensitive to computational errors in the current distributions. As demonstrated by the example given in the paper, even rather crude approximations to the dominant current distributions can yield good results.

Equivalence between Current and Charge Excitation

Consider a structure element excited by an oscillating charge Q which is placed at a distance d+O above the (plane) contact area $\sigma(\text{Fig. 4})$. The charge Q produces an electric potential field - $\nabla \hat{\phi}_p$ which acts as the primary field for the excitation of the structure element. The induced current and charge distribution $\vec{1}$, q radiates a Maxwell field which is characterized by the retarded potentials \vec{A} and $\hat{\phi}$. The total field satisfies the boundary condition $\vec{E}_{tan} = 0$:

$$[j\omega\bar{A} + (\bar{\nabla}\hat{\phi} + \bar{\nabla}\hat{\phi}_{D})] \times d\bar{S} = \bar{0} \text{ on S and } \sigma$$
 (A1.1)

Current and charge distribution satisfy the continuity condition

$$\nabla \cdot \vec{1} + j\omega q = \vec{0}$$
 on S and σ (A1.2)

Let

$$i = i_S$$
 on S, $\bar{i} = \bar{i}_\sigma$ on σ , $q = q_S$ on S, $q = q_\sigma$ on σ (A1.3)

$$\bar{A} = \bar{A}_S + \bar{A}_\sigma \quad \hat{\phi} = \hat{\phi}_S + \hat{\phi}_\sigma \tag{A1.4}$$

where \bar{A}_S and $\hat{\phi}_S$ refer to the current and charge distribution on S, and \bar{A}_σ and $\hat{\phi}_\sigma$ to the current and charge distribution on σ . Since σ <<S, the contribution of \bar{A}_σ to the total vector potential \bar{A} can be neglected. The charge distribution q_σ consists essentially of the counter-charge to Q:

$$\int_{\sigma} q_{\sigma} d\sigma = -Q \tag{A1.5}$$

There is a small additional induced charge on σ which is a continuation of the charge distribution on S into the contact area. This charge can be neglected since σ <<S.

When d approaches zero, the potential field of the oscillating charge Q is compensated by that of the counter-charge:

Thus
$$\hat{\phi}_p + \hat{\phi}_\sigma = 0$$
, $\nabla \hat{\phi}_p = \nabla \hat{\phi}_S$ (A1.6)

This means, the entire field is practically only determined by the current and charge distribution on S which satisfies the boundary condition

$$(j\omega \bar{A}_S + \bar{\nabla}\phi_S) \times d\bar{S} = \bar{0} \text{ on } S$$
 (A1.7)

and the continuity condition

$$\bar{\nabla} \cdot \bar{\mathbf{I}}_{S} + j \omega q_{S} = 0 \tag{A1.8}$$

Moreover, since the net charge on the structure element is zero, the charge on S is Q, and the current flux through the boundary Γ of the contact area is $j\omega Q$.

Thus, the current and charge distribution on S, produced by the external charge Q, are identical with the dominant current and charge distribution produced by an impressed current $I = j\omega Q$.

Since $j\omega Q$ is the displacement current which enters the structure element at the contact area it is obvious that excitation by an impressed displacement current is equivalent to excitation by an impressed conduction current.

Derivation of Equation III.19

Consider a structure element with several terminals and let k and j be any two terminals where currents I_k and I_j are impressed. The corresponding dominant current and charge distributions \overline{i}_k , q_k and \overline{i}_j , q_j produce the fields \overline{E}_k and \overline{E}_j which satisfy the boundary conditions

$$\vec{E}_k \times d\vec{S} = -(j\omega \vec{A}_k + \nabla \hat{\phi}_k) \times d\vec{S} = \vec{0}$$
 (A2.1)

$$\vec{E}_j \times d\vec{S} = -(j\omega \vec{A}_j + \vec{\nabla} \hat{\phi}_j) \times d\vec{S} = \vec{0}$$
 (A2.2)

Since the currents \mathbf{i}_k and \mathbf{i}_j are tangential to the surfaces, it follows from the boundary conditions

$$\int_{S} (j\omega \bar{A}_{k} + \bar{\nabla}\hat{\phi}_{k}) \cdot \bar{f}_{k} dS = 0$$
 (A2.3)

$$\int_{S} (j\omega \bar{A}_{k} + \bar{\nabla}\hat{\phi}_{k}) \cdot \bar{I}_{j} dS = 0$$
 (A2.4)

Using the vector identity

$$\vec{\nabla} \cdot (\hat{\phi}\vec{1}) = \vec{\nabla}\hat{\phi} \cdot \vec{1} + \hat{\phi}(\vec{\nabla}\cdot\vec{1})$$
 with $\vec{\nabla} \cdot \vec{1} = -j\omega q$ (A2.5)

and applying Gauss' theorem as in (8) of Section II, equations (A2.3) and (A2.4) can be written in the form

$$-\int_{S} [\overline{v} \cdot (\hat{\phi}_{k} \overline{i}_{k})] dS = \hat{\phi}_{kk} I_{k} = j\omega \int_{S} (\overline{A}_{k} \cdot \overline{i}_{k} + \hat{\phi}_{k} q_{k}) dS$$
 (A2.6)

$$-\int_{S} [\overline{\nabla} \cdot (\hat{\phi}_{k} \overline{1}_{j})] dS = \hat{\phi}_{jk} I_{j} = j\omega \int_{S} (\overline{A}_{k} \cdot \overline{1}_{j} + \hat{\phi}_{k} q_{j}) dS$$
 (A2.7)

where $\hat{\phi}_{kk}$ is the potential at the terminal k due to I_k , and $\hat{\phi}_{jk}$ that at the terminal j due to I_k . For j = k, (A2.7) transforms into (A2.6).

With

$$\hat{\phi}_{jk} = Z_{jk}I_k \tag{A2.8}$$

one obtains from (A2.7) the expression for \mathbf{Z}_{jk} given in the first line of III.19.

The formulation in the second line of III.19 is obtained if the potentials \bar{A}_{k} and $\hat{\phi}_{k}$ are expressed by III.1 and III.12 respectively.

Derivation of Equation III.23

Let \vec{i}_k^i be a dominant current distribution on the surface S^i and s_k^{in} be the scatter current distribution on S^n produced by \vec{i}_k^i (n = 1, 2, ..., N).

$$\delta \bar{A}_{k}^{\dagger}(\bar{r}) = \frac{\mu}{4\pi} \sum_{n=1}^{N} \int_{S^{n}} \delta \bar{I}_{k}^{\dagger n}(\bar{r}') G(\bar{r}, \bar{r}') dS^{n}(\bar{r}')$$
(A3.1)

Multiplying (A3.1) with $i_k^{(\bar{r})}$ and integrating over $i_k^{(\bar{r})}$

$$\int_{S^{\hat{i}}} \delta A_{k}^{\hat{i}}(\bar{r}) \cdot \bar{I}_{k}^{\hat{i}}(\bar{r}) dS^{\hat{i}} = \frac{\mu}{4\pi} \int_{S^{\hat{i}}} \bar{I}_{k}^{\hat{i}}(\bar{r}) \cdot \sum_{n=1}^{N} \int_{S^{n}} \delta \bar{I}_{k}^{\hat{i}n}(\bar{r}') G(\bar{r}, \bar{r}') dS^{\hat{i}}(\bar{r}) dS^{\hat{i}}(\bar{r})$$

$$= \frac{\mu}{4\pi} \sum_{n=1}^{N} \int_{S^{n}} \delta \bar{I}_{k}^{\hat{i}n}(\bar{r}') \cdot \int_{S^{\hat{i}}} \bar{I}_{k}^{\hat{i}}(\bar{r}) G(\bar{r}, \bar{r}') dS^{\hat{i}}(\bar{r}) dS^{\hat{n}}(\bar{r}')$$

$$= \sum_{n=1}^{N} \int_{S^{n}} \delta \bar{I}_{k}^{\hat{i}n}(\bar{r}) \cdot \bar{A}_{k}^{\hat{i}}(\bar{r}) dS^{\hat{n}}, (G(\bar{r}, \bar{r}') = G(\bar{r}', \bar{r}))$$
(A3.2)

Similarily it can be shown that

$$\int_{S^{\hat{i}}} \delta \hat{\phi}_{k}^{\hat{i}} q_{k}^{\hat{i}} dS^{\hat{i}} = \sum_{n=1}^{N} \int_{S^{\hat{i}}} \delta q_{k}^{\hat{i}n} \hat{\phi}_{k}^{\hat{i}} dS^{\hat{n}}$$
(A3.3)

The proof for III.31 in the body of the paper follows the same outline given above.

Proof for the Stationary Formulation of the Impedances

a) To prove that

$$Z = \frac{j\omega}{I^2} \int_{S} (\vec{A} \cdot \vec{1} + \hat{\phi}q) dS$$
 (A4.1)

represents a stationary formulation of the intrinsic impedance, we assume that the dominant current distribution \tilde{i} has an error of $\Delta \tilde{i}$. The corresponding errors of q, \tilde{A} and $\hat{\phi}$ shall be denoted Δq , $\Delta \tilde{A}$ and $\Delta \hat{\phi}$. Then

$$Z + \Delta Z = \frac{j\omega}{I^2} \int_{S} [(\bar{A} + \Delta \bar{A}) \cdot (\bar{1} + \Delta \bar{1}) + (\hat{\phi} + \Delta \hat{\phi})(q + \Delta q)] dS \qquad (A4.2)$$

The boundary condition for the correct dominant current distribution yields

$$\int_{S} (j\omega \bar{A} + \bar{\nabla}\hat{\phi}) \cdot \Delta \bar{I} dS = 0$$
 (A4.3)

Since the dominant current distribution is the continuation of the impressed current which is assumed to be unchanged, $\Delta \bar{i}$ is zero at the terminal, and (A4.3) can be written in the form

$$j\omega \int_{S} (\bar{A} - \Delta \bar{I} + \hat{\varphi} \Delta q) dS = 0$$
 (A4.4)

Using the relations

$$\int_{S} \overline{A} \cdot \Delta \overline{I} dS = \int_{S} \Delta \overline{A} \cdot \overline{I} dS; \int_{S} \widehat{\Phi} \Delta q dS = \int_{S} \Delta \widehat{\Phi} q dS$$
 (A4.5)

along with (A4.4), one obtains

$$\int_{S} (\bar{A} \cdot \Delta \bar{i} + \hat{\phi} \Delta q) dS = \int_{S} (\Delta \bar{A} \cdot \bar{i} + \Delta \hat{\phi} q) dS$$
 (A4.6)

Thus, from (A4.1), (A4.3), and (A4.6)

$$\Delta Z = \frac{j\omega}{I^2} \int_{S} (\Delta \bar{A} \cdot \Delta \bar{1} + \Delta \hat{\phi} \Delta q) dS \qquad (A4.7)$$

This means, ΔZ is of second order.

b) In the case of a mutual intrinsic impedance

$$Z_{jk} = \frac{j\omega}{I_k I_j} \int_{S} (\bar{A}_k \cdot \bar{i}_j + \hat{\phi}_k q_j) dS$$
 (A4.8)

both the dominant current distributions \vec{i}_k and \vec{i}_j may have errors $\Delta\vec{i}_k$ and $\Delta\vec{i}_j$. Thus

$$\Delta Z_{jk} = \frac{j\omega}{I_k I_j} \int_{S} \left[\left(\Delta \bar{A}_k \cdot \bar{i}_j + \Delta \hat{\phi}_k q_j \right) + \left(\bar{A}_k \cdot \Delta \bar{i}_j + \hat{\phi}_k q_j \right) + \left(\Delta \bar{A}_k \cdot \Delta \bar{i}_j + \Delta \hat{\phi}_k \Delta q_j \right) \right] dS$$
(A4.9)

Because the correct dominant current distributions satisfy the boundary condition $\vec{E} \times d\vec{S} = \vec{0}$,

$$\int_{S} (j\omega \bar{A}_{k} + \bar{\nabla} \hat{\phi}_{k}) \cdot \Delta \bar{I}_{j} dS = 0$$

or

$$j\omega \int_{S} (\bar{A}_{k} \cdot \Delta \bar{I}_{j} + \hat{\phi}_{k} \Delta q_{j}) dS = 0$$
 (A4.10)

Furthermore

$$\int_{S} (\Delta \bar{A}_{k} \cdot \bar{i}_{j} + \Delta \hat{\phi}_{k} q_{j}) dS = \int_{S} (\bar{A}_{j} \cdot \Delta \bar{i}_{k} + \hat{\phi}_{j} \Delta q_{k}) dS = 0$$
 (A4.11)

From (A4.10) and (A4.11), (A4.9) reduces to

$$\Delta Z_{jk} = \frac{j}{I_k I_j} \int_{S} (\Delta \bar{A}_k + \Delta \bar{I}_j + \Delta \hat{\phi}_k \Delta q_j) dS$$
 (A4.12)

Thus ΔZ_{ik} is of second order.

c) To prove that III.33 is a stationary expression for the field coupling impedances we treat the assembly of disconnected structure elements like a single body. This means, when a current is impressed on terminal $\binom{i}{k}$ we consider the dominant current distribution \widetilde{i}_{k}^{i} together with the associated scatter currents $\delta \widetilde{i}_{k}^{i}$ which are distributed over all the elements as a dominant current distribution of the system. The coupling impedances between any two terminals can then be formulated like mutual intrinsic impedances (A4.8):

$$Z_{(F)}^{i,\ell} = \frac{j\omega}{I_k^i I_m^\ell} \int_{\Sigma S_n} \left[(\bar{A}_m^\ell + \delta \bar{A}_m^\ell) \cdot (\bar{I}_k^i + \delta \bar{I}_k^i) + (\hat{\phi}_m^\ell + \delta \hat{\phi}_m^\ell) (q_m^\ell + \delta q_m^\ell) \right] dS \quad (A4.13)$$

The error $\Delta Z_{km}^{i\ell}$ produced by errors in the current distributions \tilde{i}_k^i , $\delta \tilde{i}_k^i$ and \tilde{i}_m^ℓ , $\delta \tilde{i}_m^\ell$ is obtained from (A4.12):

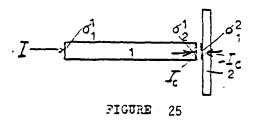
$$\Delta Z(F) = \frac{j\omega}{I_k^{\dagger}I_m^{\ell}} \int_{\sum S} \left[\left(\Delta \bar{A}_k^{\dagger} + \Delta \delta \bar{A}_k^{\dagger} \right) \cdot \left(\Delta I_m^{\ell} + \Delta \delta \bar{I}_m^{\ell} \right) + \left(\Delta \hat{\phi}_k^{\dagger} + \delta \hat{\phi}_k^{\dagger} \right) \left(\Delta q_m^{\ell} + \Delta \delta q_m^{\ell} \right) \right] dS$$

$$(A4.14)$$

and is of second order. This relation can also be derived from III.33 but only in a rather cumbersome manner.

If a current is impressed on any terminal of a diakopted structure there will be capacitive currents between the contact areas of the disconnected elements, which have not been considered in the derivation of the field coupling impedances. One might therefore conclude that the formulas are approximations which require the gaps between adjacent contact areas to be so large that capacitive currents are negligible. The purpose of this appendix is to i,i i,ℓ show that the expressions for Z(F) and Z(F) are correct even if the gaps are k,k k,m infinitely small.

Figure 25 shows two structure elements, a clylindrical rod 1 and a disc 2 with the opposing contact areas σ_2^1 and σ_1^2 . If a current is impressed on the terminal $\binom{1}{1}$ of the rod, there will be a potential difference between σ_2^1 and σ_1^2 which, in turn, produces a displacement current between these terminals. The potential difference which is the line integral of the electric potential field between σ_2^1 and σ_1^2 is essentially determined by the charges on the contact areas. If the gap is made smaller and smaller, the potential difference approaches zero, and the total current distribution becomes the dominant current distribution of the interconnected elements. As shown in Appendix 1 displacement currents at contact areas are equivalent to impressed currents. Thus, the situation discussed above is the excitation of a diakopted structure not by one, but by three impressed currents. To produce excitation by one impressed current in accordance with our theory the displacement currents must be compensated so that there is no current flux from the contact area onto the surface S of the element (S, by definition does not can ain the contact areas of the element). The magnitude of these compensating currents does not enter into



Compensation of Capacitive Currents at Contact Areas

the analysis because, if the impressed currents of the diakopted structure are identical with the junction currents of the interconnected structure there are no displacement currents between adjacent contact areas and the sum of all the compensating currents is zero.

